cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217756 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with exactly k components where each component has at most one cycle; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 31, 19, 6, 1, 347, 195, 55, 10, 1, 4956, 2707, 720, 125, 15, 1, 85102, 46319, 12082, 2030, 245, 21, 1, 1698712, 930947, 242774, 40397, 4830, 434, 28, 1, 38562309, 21372678, 5620177, 938826, 112287, 10206, 714, 36, 1
Offset: 1

Views

Author

Geoffrey Critzer, Mar 23 2013

Keywords

Comments

The Bell transform of A129271(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
From Washington Bomfim, May 10 2020: (Start)
The second formula is based on Kolchin's formula (1.4.2) [see the Kolchin reference].
Some special cases of T(n,k) are
Column 2 = n! * Sum_{j=1..floor(n/2)} f(j)/j! * f(n-j)/(n-j)!, odd n.
n!/2 *( (f(n/2)/(n/2)!)^2 + 2 * Sum_{j=1..floor(n/2)-1} f(j)/j! * f(n-j)/(n-j)!), even n.
Diagonal T(n,n-3) = 1/48*n^6 +1/48*n^5 -13/48*n^4 -37/48*n^3 +13/4*n^2 -9/4*n,
Diagonal T(n,n-2) = 1/8*n^4 -1/12*n^3 -5/8*n^2 +7/12*n = A215862(n-2),
Diagonal T(n,n-1) = 1/2*n^2- 1/2*n = A000217(n-1),
and Diagonal T(n,n) = 1. (End)

Examples

			  ... o-o ........... o o ........... o o ..........
  ...     ........... |   ........... |\  ..........
  ... o-o ........... o-o ........... o-o ..........
T(4,2) = 19 because the above graphs on 4 nodes have 2 components with at most one cycle.  They have respectively 3 + 12 + 4 = 19 labelings.
1;
1,     1;
4,     3,     1;
31,    19,    6,     1;
347,   195,   55,    10,   1;
4956,  2707,  720,   125,  15,  1;
85102, 46319, 12082, 2030, 245, 21, 1;
		

References

  • V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999, pp 30-31.

Crossrefs

Row sums = A133686.
Column 1 = A129271.

Programs

  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Exp[y(t/2-3t^2/4)]/(1-t)^(y/2),{x,0,nn}],{x,y}],1]]//Grid
  • PARI
    \p 1000  \\ See Peter Luschny formula in A129271.
    f(p) = round(((p-1) * exp(p) * incgam(p-1,p) + p^(p-2) * (3-p)) /2);
    T(n,k) = { my(S=0, D, p, c); forpart(a = n, D = Set(a);
       S += prod(j=1,#D, p=D[j]; c=#select(x-> x==p,Vec(a)); (f(p)/p!)^c /c!)
    , [1, n], [k, k]); n! * S }; \\ Washington Bomfim, Jun 16 2020
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A129271(n+1), 10) # Peter Luschny, Jan 18 2016
    

Formula

E.g.f.: exp(y*A(x)) where A(x) is the e.g.f. for A133686.
T(n,k) = n!/k! * Sum_{compositions p_1 + ... + p_k = n, p_i >= 1} Product_{j=1..k} f(p_j)/p_j!, where f(p)=A129271(p) = ((p-1)*e^p*GAMMA(p-1,p)+p^(p-2)*(3-p))/2.