cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217758 Triangular numbers of the form k^2 + k - 1.

Original entry on oeis.org

1, 55, 1891, 64261, 2183005, 74157931, 2519186671, 85578188905, 2907139236121, 98757155839231, 3354836159297755, 113965672260284461, 3871478020690373941, 131516287031212429555, 4467682281040532230951, 151769681268346883422801
Offset: 1

Views

Author

Alex Ratushnyak, Mar 23 2013

Keywords

Comments

Triangular numbers belonging to A028387. - Bruno Berselli, Apr 18 2018
Since this sequence lists triangular numbers t such that 4*t + 5 = u^2 and 8*t + 1 = v^2 by definition of triangular numbers, 2*u^2 - 9 = 2*(4*t + 5) - 9 = 8*t + 1 = v^2, that is, sqrt(4*a(n) + 5) is in A075841. - Altug Alkan, Apr 18 2018

Examples

			Triangular(10) = 55 = 7^2 + 7 - 1, so 55 is in the sequence.
		

Crossrefs

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 rootPronic(U64 a) {
        U64 sr = 1L<<32, s, b;
        while (a < sr*(sr-1))  sr>>=1;
        for (b = sr>>1; b; b>>=1) {
            s = sr+b;
            if (a >= s*(s-1))  sr = s;
        }
        return sr;
    }
    int main() {
      U64 a, i, t;
      for (i=0; i < 1L<<32; ++i) {
          a = i*(i+1)/2 + 1;
          t = rootPronic(a);
          if (a == t*(t-1))  printf("%llu %llu %llu\n", i, t, a-1);
      }
      return 0;
    }
    
  • Mathematica
    a[1]=1; a[2]=55; a[3]=1891; a[n_] := a[n] = 35*a[n-1] - 35*a[n-2] + a[n-3]; Array[a,20] (* Giovanni Resta, Mar 24 2013 *)
    Table[Floor@(9 (17 + Sqrt@ 288)^n*(3 - Sqrt@ 8)/32), {n, 0, 16}] (* or *)
    CoefficientList[Series[-x (1 + 20 x + x^2)/((x - 1) (x^2 - 34 x + 1)), {x, 0, 16}], x] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    Vec(x*(1+20*x+x^2)/(1-35*x+35*x^2-x^3)+O(x^66)) \\ Joerg Arndt, Mar 25 2013

Formula

From Giovanni Resta, Mar 24 2013: (Start)
G.f.: -x*(1 + 20*x + x^2) / ( (x - 1)*(x^2 - 34*x + 1) ).
a(n) = floor(9 * (17 + sqrt(288))^n * (3 - sqrt(8))/32). (End)
a(n) = (A075841(n)^2 - 5)/4. - Altug Alkan, Apr 18 2018