A217857 w(n) = w(pqr) = Gpf(p + q)*Gpf(p + r)*Gpf(q + r), defined when n belongs to A217856, with Gpf(m): greatest prime dividing m.
50, 75, 98, 18, 70, 75, 338, 12, 245, 50, 75, 455, 722, 63, 20, 98, 50, 50, 63, 147, 475, 30, 182, 385, 1922, 12, 242, 105, 325, 175, 338, 75, 117, 3698, 28, 1463, 363, 50, 310, 45, 75, 935, 98, 147, 12, 507, 242, 325, 245, 105, 7442, 171, 1859, 98, 63, 2365
Offset: 1
Keywords
Examples
w(12) = wpqr(2, 2, 3) = gpf(4)*gpf(5)*gpf(5) = 2*5*5 = 50. w(20) = wpqr(2, 2, 5) = gpf(4)*gpf(7)*gpf(7) = 2*7*7 = 98.
Links
- Wushi Goldring, Dynamics of the w function and primes, Journal of Number Theory, Volume 119, Issue 1, July 2006, Pages 86-98.
- Yong-Gao Chen, Ying Shi, Distribution of primes and dynamics of the w function, Journal of Number Theory, Volume 128, Issue 7, July 2008, Pages 2085-2090.
Programs
-
PARI
gpf(n) = {local(f);if (n==1, return (1));f = factor(n); return (f[length(f~), 1]);} wpqr(p, q, r) = {return (gpf(p+q)*gpf(p+r)*gpf(q+r));} allwf(n) = {for (i=2, n,f = factor(i); len = length(f~);if (len > 1,s = sum(j=1, len, f[j,2]);if (s == 3,print1(wpqr(f[1,1], f[2,1], i/(f[1,1]*f[2,1])), ", "););););}
Comments