cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217857 w(n) = w(pqr) = Gpf(p + q)*Gpf(p + r)*Gpf(q + r), defined when n belongs to A217856, with Gpf(m): greatest prime dividing m.

Original entry on oeis.org

50, 75, 98, 18, 70, 75, 338, 12, 245, 50, 75, 455, 722, 63, 20, 98, 50, 50, 63, 147, 475, 30, 182, 385, 1922, 12, 242, 105, 325, 175, 338, 75, 117, 3698, 28, 1463, 363, 50, 310, 45, 75, 935, 98, 147, 12, 507, 242, 325, 245, 105, 7442, 171, 1859, 98, 63, 2365
Offset: 1

Views

Author

Michel Marcus, Oct 13 2012

Keywords

Comments

w(n) belongs to A217856, too.
w(20) = 98, w(98) = 63, w(63) = 75, and w(75) = 20.
For every n in A217856, iterating w(n), w(w(n)), ... will lead to this cycle.

Examples

			w(12) = wpqr(2, 2, 3) = gpf(4)*gpf(5)*gpf(5) = 2*5*5 = 50.
w(20) = wpqr(2, 2, 5) = gpf(4)*gpf(7)*gpf(7) = 2*7*7 = 98.
		

Crossrefs

Programs

  • PARI
    gpf(n) = {local(f);if (n==1, return (1));f = factor(n); return (f[length(f~), 1]);} wpqr(p, q, r) = {return (gpf(p+q)*gpf(p+r)*gpf(q+r));} allwf(n) = {for (i=2, n,f = factor(i); len = length(f~);if (len > 1,s = sum(j=1, len, f[j,2]);if (s == 3,print1(wpqr(f[1,1], f[2,1], i/(f[1,1]*f[2,1])), ", "););););}