A217864 Number of prime numbers between floor(n*log(n)) and (n + 1)*log(n + 1).
0, 2, 2, 2, 0, 2, 1, 2, 2, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1
Offset: 1
Keywords
Examples
log(1)=0 and 2*log(2) ~ 1.38629436112. Hence, a(1)=0. Floor(2*log(2)) = 1 and 3*log(3) ~ 3.295836866. Hence, a(2)=2.
References
- A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.
Links
- Paul Erdős, On the difference of consecutive primes, Quart. J. Math., Oxford Ser. 6 (1935), pp. 124-128.
Programs
-
JavaScript
function isprime(i) { if (i==1) return false; if (i==2) return true; if (i%2==0) return false; for (j=3;j<=Math.floor(Math.sqrt(i));j+=2) if (i%j==0) return false; return true; } for (i=1;i<88;i++) { c=0; for (k=Math.floor(i*Math.log(i));k<=(i+1)*Math.log(i+1);k++) if (isprime(k)) c++; document.write(c+", "); }
-
Mathematica
Table[s = Floor[n*Log[n]]; PrimePi[(n+1) Log[n+1]] - PrimePi[s] + Boole[PrimeQ[s]], {n, 100}] (* T. D. Noe, Oct 15 2012 *)
-
PARI
a(n)=sum(k=n*log(n)\1,(n+1)*log(n+1),isprime(k)) \\ Charles R Greathouse IV, Oct 15 2012
Comments