cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217864 Number of prime numbers between floor(n*log(n)) and (n + 1)*log(n + 1).

Original entry on oeis.org

0, 2, 2, 2, 0, 2, 1, 2, 2, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Jon Perry, Oct 13 2012

Keywords

Comments

Conjecture: a(n) is unbounded.
If Riemann Hypothesis is true, this is probably true as the PNT is generally a lower bound for Pi(n).
Conjecture: a(n)=0 infinitely often.
The first conjecture follows from Dickson's conjecture. The second conjecture follows from a theorem of Brauer & Zeitz on prime gaps. - Charles R Greathouse IV, Oct 15 2012

Examples

			log(1)=0 and 2*log(2) ~ 1.38629436112. Hence, a(1)=0.
Floor(2*log(2)) = 1 and 3*log(3) ~ 3.295836866. Hence, a(2)=2.
		

References

  • A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.

Crossrefs

An alternate version of A166712.

Programs

  • JavaScript
    function isprime(i) {
    if (i==1) return false;
    if (i==2) return true;
    if (i%2==0) return false;
    for (j=3;j<=Math.floor(Math.sqrt(i));j+=2)
    if (i%j==0) return false;
    return true;
    }
    for (i=1;i<88;i++) {
    c=0;
    for (k=Math.floor(i*Math.log(i));k<=(i+1)*Math.log(i+1);k++) if (isprime(k)) c++;
    document.write(c+", ");
    }
    
  • Mathematica
    Table[s = Floor[n*Log[n]]; PrimePi[(n+1) Log[n+1]] - PrimePi[s] + Boole[PrimeQ[s]], {n, 100}] (* T. D. Noe, Oct 15 2012 *)
  • PARI
    a(n)=sum(k=n*log(n)\1,(n+1)*log(n+1),isprime(k)) \\ Charles R Greathouse IV, Oct 15 2012