A217902 O.g.f.: Sum_{n>=0} 3*n^n*(n+3)^(n-1) * exp(-n*(n+3)*x) * x^n / n!.
1, 3, 18, 210, 3696, 86436, 2521800, 88274640, 3608360064, 168822613872, 8901871248480, 522534101560224, 33804242536287744, 2390169742849449216, 183412961210465667072, 15183107016739655860224, 1348837954231568133427200, 128012762381954718934183680
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + 3*x + 18*x^2 + 210*x^3 + 3696*x^4 + 86436*x^5 + 2521800*x^6 +... where A(x) = 1 + 3*1^1*4^0*x*exp(-1*4*x) + 3*2^2*5^1*exp(-2*5*x)*x^2/2! + 3*3^3*6^2*exp(-3*6*x)*x^3/3! + 3*4^4*7^3*exp(-4*7*x)*x^4/4! + 3*5^5*8^4*exp(-5*8*x)*x^5/5! +... simplifies to a power series in x with integer coefficients.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Programs
-
Mathematica
Flatten[{1,Table[Sum[Binomial[n-1,j]*3^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,3*m^m*(m+3)^(m-1)*x^m*exp(-m*(m+3)*x+x*O(x^n))/m!),n)}
-
PARI
{a(n)=(1/n!)*polcoeff(sum(k=0, n, 3*k^k*(k+3)^(k-1)*x^k/(1+k*(k+3)*x +x*O(x^n))^(k+1)), n)}
-
PARI
{a(n)=1/n!*sum(k=0,n, 3*(-1)^(n-k)*binomial(n,k)*k^n*(k+3)^(n-1))}
-
PARI
{a(n)=polcoeff(1+3*x*(1+3*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
-
PARI
{a(n)=polcoeff(1+3*x*(1-3*x)^n/prod(k=0, n, 1-(k+3)*x +x*O(x^n)), n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = 1/n! * Sum_{k=0..n} 3*(-1)^(n-k)*binomial(n,k) * k^n * (k+3)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 3*k^k*(k+3)^(k-1)*x^k / (1 + k*(k+3)*x)^(k+1).
a(n) = [x^n] 1 + 3*x*(1+3*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 3*x*(1-3*x)^(n-1) / Product_{k=1..n} (1-(k+3)*x).
a(n) ~ 3 * 2^(2*n) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+3/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014
Comments