cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217903 O.g.f.: Sum_{n>=0} 4*n^n*(n+4)^(n-1) * exp(-n*(n+4)*x) * x^n / n!.

Original entry on oeis.org

1, 4, 28, 356, 6696, 165148, 5030124, 182425664, 7681137152, 368519318396, 19855601635860, 1187545259985444, 78096484084586904, 5602487847925307152, 435490669526307321808, 36468662242145922271968, 3273635846285796437437824, 313622489632532976209812284
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 4*(n+4)^(n-1) * exp(-(n+4)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 4*x + 28*x^2 + 356*x^3 + 6696*x^4 + 165148*x^5 + 5030124*x^6 +...
where
A(x) = 1 + 4*1^1*5^0*x*exp(-1*5*x) + 4*2^2*6^1*exp(-2*6*x)*x^2/2! + 4*3^3*7^2*exp(-3*7*x)*x^3/3! + 4*4^4*8^3*exp(-4*8*x)*x^4/4! + 4*5^5*9^4*exp(-5*9*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*4^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,4*m^m*(m+4)^(m-1)*x^m*exp(-m*(m+4)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 4*k^k*(k+4)^(k-1)*x^k/(1+k*(k+4)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 4*(-1)^(n-k)*binomial(n,k)*k^n*(k+4)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1+4*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1-4*x)^n/prod(k=0, n, 1-(k+4)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 4*(-1)^(n-k)*binomial(n,k) * k^n * (k+4)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 4*k^k*(k+4)^(k-1)*x^k / (1 + k*(k+4)*x)^(k+1).
a(n) = [x^n] 1 + 4*x*(1+4*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 4*x*(1-4*x)^(n-1) / Product_{k=1..n} (1-(k+4)*x).
a(n) ~ 2^(2*n+5/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014