A217904 O.g.f.: Sum_{n>=0} 5*n^n*(n+5)^(n-1) * exp(-n*(n+5)*x) * x^n / n!.
1, 5, 40, 550, 11000, 285380, 9064560, 340521520, 14773539200, 727281054640, 40072285049600, 2444188361990880, 163550098793059200, 11915396563502988800, 939110495156447488000, 79629365649015094272000, 7229173136192077603737600, 699726658343948617515436800
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + 5*x + 40*x^2 + 550*x^3 + 11000*x^4 + 285380*x^5 + 9064560*x^6 +... where A(x) = 1 + 5*1^1*6^0*x*exp(-1*6*x) + 5*2^2*7^1*exp(-2*7*x)*x^2/2! + 5*3^3*8^2*exp(-3*8*x)*x^3/3! + 5*4^4*9^3*exp(-4*9*x)*x^4/4! + 5*5^5*10^4*exp(-5*10*x)*x^5/5! +... simplifies to a power series in x with integer coefficients.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..340
Programs
-
Mathematica
Flatten[{1,Table[Sum[Binomial[n-1,j]*5^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,5*m^m*(m+5)^(m-1)*x^m*exp(-m*(m+5)*x+x*O(x^n))/m!),n)}
-
PARI
{a(n)=(1/n!)*polcoeff(sum(k=0, n, 5*k^k*(k+5)^(k-1)*x^k/(1+k*(k+5)*x +x*O(x^n))^(k+1)), n)}
-
PARI
{a(n)=1/n!*sum(k=0,n, 5*(-1)^(n-k)*binomial(n,k)*k^n*(k+5)^(n-1))}
-
PARI
{a(n)=polcoeff(1+5*x*(1+5*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
-
PARI
{a(n)=polcoeff(1+5*x*(1-5*x)^n/prod(k=0, n, 1-(k+5)*x +x*O(x^n)), n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = 1/n! * Sum_{k=0..n} 5*(-1)^(n-k)*binomial(n,k) * k^n * (k+5)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 5*k^k*(k+5)^(k-1)*x^k / (1 + k*(k+5)*x)^(k+1).
a(n) = [x^n] 1 + 5*x*(1+5*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 5*x*(1-5*x)^(n-1) / Product_{k=1..n} (1-(k+5)*x).
a(n) ~ 5 * 2^(2*n+1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+5/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014
Comments