A217921 Number of steps to calculate A175872(n).
0, 1, 0, 2, 1, 2, 0, 2, 2, 1, 3, 3, 3, 2, 0, 2, 2, 4, 3, 3, 1, 4, 3, 2, 3, 3, 2, 2, 3, 2, 0, 2, 2, 4, 2, 2, 4, 3, 2, 3, 4, 1, 3, 4, 3, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 0, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 4, 5, 3, 4, 2, 2, 3, 4, 3, 3, 3, 1, 4
Offset: 1
Keywords
Examples
n=100, 4 steps: [1,1,0,0,1,0,0]->[2,2,1,2]->[2,1,1]->[1,2]->[1,1], therefore a(100)=4, A175872(100)=2; n=127, no step: [1,1,1,1,1,1,1], therefore a(127)=0, A175872(127)=7; n=128, 2 steps: [1,0,0,0,0,0,0,0]->[1,7]->[1,1], therefore a(128)=2, A175872(128)=2; n=129, 2 steps: [1,0,0,0,0,0,0,1]->[1,6,1]->[1,1,1], therefore a(129)=2, A175872(129)=3; n=130, 4 steps: [1,0,0,0,0,0,1,0]->[1,5,1,1]->[1,1,2]->[2,1]->[1,2], therefore a(130)=4, A175872(130)=2; n=131, 2 steps: [1,0,0,0,0,0,1,1]->[1,5,2]->[1,1,1], therefore a(131)=2, A175872(100)=3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A030308.
Programs
-
Haskell
import Data.List (group, genericLength) a217921 n = fst $ until (all (== 1) . snd) f (0, a030308_row n) where f (i, xs) = (i + 1, map genericLength $ group xs)
Comments