cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217949 Number of n-element 0..3 arrays with each element the minimum of 3 adjacent elements of a random 0..3 array of n+2 elements.

Original entry on oeis.org

4, 16, 50, 130, 310, 736, 1821, 4673, 12107, 31103, 79039, 199819, 505477, 1282309, 3259549, 8288613, 21064316, 53497376, 135833020, 344914900, 875983319, 2224986219, 5651490601, 14354263713, 36457137516, 92593166734, 235168023403
Offset: 1

Views

Author

R. H. Hardin, Oct 15 2012

Keywords

Comments

See A217954 and A228461 for more information. - N. J. A. Sloane, Sep 02 2013

Examples

			Some solutions for n=4
..2....0....1....0....1....0....0....0....0....2....2....3....1....2....1....1
..0....3....2....0....1....2....0....2....2....3....2....3....2....2....3....1
..0....0....1....2....1....3....2....2....2....2....2....2....2....3....1....1
..0....0....0....3....0....0....2....1....0....1....0....1....2....2....0....3
		

Crossrefs

Column 3 of A217954. Cf. A217883, A217954.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10).
Empirical: G.f.: -x*(x^3+x^2+2) *(x^6+2*x^5+x^4+4*x^3+4*x^2+2) / ( (x^5+3*x^2-2*x+1) *(x^5+2*x^4+x^2+2*x-1) ). - R. J. Mathar, May 17 2014