A228461 Two-dimensional array read by antidiagonals: T(n,k) = number of arrays of maxima of three adjacent elements of some length n+2 0..k array.
2, 3, 4, 4, 9, 7, 5, 16, 22, 11, 6, 25, 50, 46, 17, 7, 36, 95, 130, 91, 27, 8, 49, 161, 295, 310, 183, 44, 9, 64, 252, 581, 821, 736, 383, 72, 10, 81, 372, 1036, 1847, 2227, 1821, 819, 117, 11, 100, 525, 1716, 3703, 5615, 6254, 4673, 1749, 189, 12, 121, 715, 2685, 6812
Offset: 1
Examples
Table starts ...2....3.....4.....5......6......7.......8.......9......10.......11.......12 ...4....9....16....25.....36.....49......64......81.....100......121......144 ...7...22....50....95....161....252.....372.....525.....715......946.....1222 ..11...46...130...295....581...1036....1716....2685....4015.....5786.....8086 ..17...91...310...821...1847...3703....6812...11721...19117....29843....44914 ..27..183...736..2227...5615..12453...25096...46941...82699...138699...223224 ..44..383..1821..6254..17487..42386...92430..185727..349558...623513..1063283 ..72..819..4673.18394..57303.151882..357510..768231.1535578..2893605..5191407 .117.1749.12107.55285.194064.567835.1453506.3357985.7152815.14263777.26930773 Some solutions for n=4 k=4 ..3....4....4....3....3....4....3....4....3....0....3....3....4....2....0....2 ..0....4....1....3....2....0....2....4....1....0....3....3....1....2....0....0 ..4....1....1....0....1....0....4....0....0....0....2....1....4....2....2....3 ..4....0....3....3....2....0....4....2....3....1....3....1....4....0....4....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1700
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-4)
k=2: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)
k=3: [order 10]
k=4: [order 13]
k=5: [order 16]
k=6: [order 19]
k=7: [order 22]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = (2/3)*n^3 + (5/2)*n^2 + (17/6)*n + 1
n=4: a(n) = (1/3)*n^4 + 2*n^3 + (25/6)*n^2 + (7/2)*n + 1
n=5: a(n) = (2/15)*n^5 + (7/6)*n^4 + (25/6)*n^3 + (19/3)*n^2 + (21/5)*n + 1
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
Extensions
Edited by N. J. A. Sloane, Sep 02 2013
Comments