cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A228740 T(n,k) = number of arrays of the median of three adjacent elements of some length n+2 0..k array.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 77, 28, 7, 36, 125, 232, 185, 50, 8, 49, 216, 545, 696, 447, 88, 9, 64, 343, 1096, 1943, 2072, 1071, 156, 10, 81, 512, 1981, 4504, 6797, 6130, 2593, 278, 11, 100, 729, 3312, 9191, 17986, 23627, 18378, 6333, 496, 12, 121
Offset: 1

Views

Author

R. H. Hardin Sep 01 2013

Keywords

Comments

See A228461 for more information about the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
...2....3.....4......5.......6.......7........8........9.......10........11
...4....9....16.....25......36......49.......64.......81......100.......121
...8...27....64....125.....216.....343......512......729.....1000......1331
..16...77...232....545....1096....1981.....3312.....5217.....7840.....11341
..28..185...696...1943....4504....9191....17088....29589....48436.....75757
..50..447..2072...6797...17986...41083....84288...159321...282274....474551
..88.1071..6130..23627...71278..181885...410828...845517..1617004...2913955
.156.2593.18378..83391..287154..819099..2037214..4564455..9418762..18182967
.278.6333.55716.298239.1174282.3749921.10282648.25107493.55950398.115793733

Examples

			Some solutions for n=4 k=4
..1..4..3..2..0..4..2..2..4..1..2..0..0..0..2..1
..2..0..2..0..0..3..3..4..2..2..2..1..2..2..3..4
..1..3..0..0..0..1..0..1..3..1..0..0..2..3..4..4
..3..1..2..1..4..1..1..4..1..2..4..0..2..2..3..3
		

Crossrefs

Row 1 is A000027(n+1)
Row 2 is A000290(n+1)
Row 3 is A000578(n+1)
For other rows, columns and diagonals see A228739-A228744.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3) +a(n-5)
k=2: [order 14]
k=3: [order 26]
k=4: [order 43]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = (2/3)*n^4 + 4*n^3 + (19/3)*n^2 + 4*n + 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]

A217883 T(n,k) = number of n-element 0..2 arrays with each element the minimum of k adjacent elements of a random 0..2 array of n+k-1 elements.

Original entry on oeis.org

3, 3, 9, 3, 9, 27, 3, 9, 22, 81, 3, 9, 22, 51, 243, 3, 9, 22, 46, 121, 729, 3, 9, 22, 46, 91, 292, 2187, 3, 9, 22, 46, 86, 183, 704, 6561, 3, 9, 22, 46, 86, 153, 383, 1691, 19683, 3, 9, 22, 46, 86, 148, 274, 819, 4059, 59049, 3, 9, 22, 46, 86, 148, 244, 511, 1749, 9749, 177147
Offset: 1

Views

Author

R. H. Hardin, observation that the diagonal is a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 14 2012

Keywords

Comments

See A228461 and A217954 for more information about the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........3......3......3.....3.....3.....3....3....3....3....3....3....3....3
........9......9......9.....9.....9.....9....9....9....9....9....9....9....9
.......27.....22.....22....22....22....22...22...22...22...22...22...22...22
.......81.....51.....46....46....46....46...46...46...46...46...46...46...46
......243....121.....91....86....86....86...86...86...86...86...86...86...86
......729....292....183...153...148...148..148..148..148..148..148..148..148
.....2187....704....383...274...244...239..239..239..239..239..239..239..239
.....6561...1691....819...511...402...372..367..367..367..367..367..367..367
....19683...4059...1749...993...685...576..546..541..541..541..541..541..541
....59049...9749...3699..1966..1223...915..806..776..771..771..771..771..771
...177147..23422...7772..3880..2263..1520.1212.1103.1073.1068.1068.1068.1068
...531441..56268..16316..7558..4243..2639.1896.1588.1479.1449.1444.1444.1444
..1594323.135166..34325.14544..7910..4711.3107.2364.2056.1947.1917.1912.1912
..4782969.324692..72349.27819.14528..8471.5285.3681.2938.2630.2521.2491.2486
.14348907.779977.152573.53226.26274.15107.9166.5980.4376.3633.3325.3216.3186

Examples

			Some solutions for n=4 k=4
..0....0....2....1....0....0....1....2....0....2....2....1....0....2....1....1
..2....2....2....1....0....0....1....1....1....2....1....2....2....2....1....2
..1....2....2....1....0....2....2....0....2....2....1....2....2....2....2....2
..0....0....0....1....1....0....1....0....0....2....1....1....2....1....0....2
		

Crossrefs

Column 2 is A202882(n+1). Cf. A228461, A217954, A217878.

Formula

Empirical for column k:
k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)
k=4: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-5) -a(n-6) +a(n-7) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11)
k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-7) -a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13)
k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-8) -a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15)
Diagonal: a(n) = (1/24)*n^4 + (1/4)*n^3 + (23/24)*n^2 + (3/4)*n + 1

A217954 T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.

Original entry on oeis.org

4, 4, 16, 4, 16, 64, 4, 16, 50, 256, 4, 16, 50, 144, 1024, 4, 16, 50, 130, 422, 4096, 4, 16, 50, 130, 310, 1268, 16384, 4, 16, 50, 130, 296, 736, 3823, 65536, 4, 16, 50, 130, 296, 624, 1821, 11472, 262144, 4, 16, 50, 130, 296, 610, 1289, 4673, 34350, 1048576, 4, 16
Offset: 1

Views

Author

R. H. Hardin, suggestion that the diagonal might be a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 15 2012

Keywords

Comments

See A228461 for comments on the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........4......4......4.....4.....4.....4.....4.....4.....4.....4.....4.....4
.......16.....16.....16....16....16....16....16....16....16....16....16....16
.......64.....50.....50....50....50....50....50....50....50....50....50....50
......256....144....130...130...130...130...130...130...130...130...130...130
.....1024....422....310...296...296...296...296...296...296...296...296...296
.....4096...1268....736...624...610...610...610...610...610...610...610...610
....16384...3823...1821..1289..1177..1163..1163..1163..1163..1163..1163..1163
....65536..11472...4673..2741..2209..2097..2083..2083..2083..2083..2083..2083
...262144..34350..12107..6134..4202..3670..3558..3544..3544..3544..3544..3544
..1048576.102896..31103.14269..8366..6434..5902..5790..5776..5776..5776..5776
..4194304.308419..79039.33577.17569.11666..9734..9202..9090..9076..9076..9076
.16777216.924532.199819.78304.38251.22313.16410.14478.13946.13834.13820.13820

Examples

			Some solutions for n=4 k=4
..0....1....0....1....1....0....1....2....0....1....1....1....0....0....3....0
..0....1....1....1....3....3....2....2....2....1....2....2....1....2....3....2
..1....3....3....2....3....2....3....3....2....1....1....3....1....2....2....3
..1....1....3....3....0....0....0....1....0....0....1....3....0....1....2....0
		

Crossrefs

Column 2 is A203094(n+1). A217949 is also a column. Cf. A228461, A217883.

Formula

Empirical for column k:
k=2: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10)
k=4: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-5) -4*a(n-6) +6*a(n-7) +4*a(n-8) +5*a(n-9) +a(n-10) +3*a(n-11) +2*a(n-12) +a(n-13)
k=5: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-6) -4*a(n-7) +6*a(n-8) +4*a(n-9) +5*a(n-10) +6*a(n-11) +2*a(n-12) +4*a(n-13) +3*a(n-14) +2*a(n-15) +a(n-16)
k=6: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-7) -4*a(n-8) +6*a(n-9) +4*a(n-10) +5*a(n-11) +6*a(n-12) +7*a(n-13) +3*a(n-14) +5*a(n-15) +4*a(n-16) +3*a(n-17) +2*a(n-18) +a(n-19)
k=7: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-8) -4*a(n-9) +6*a(n-10) +4*a(n-11) +5*a(n-12) +6*a(n-13) +7*a(n-14) +8*a(n-15) +4*a(n-16) +6*a(n-17) +5*a(n-18) +4*a(n-19) +3*a(n-20) +2*a(n-21) +a(n-22)
Diagonal: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1

A203094 Number of nX1 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 16, 50, 144, 422, 1268, 3823, 11472, 34350, 102896, 308419, 924532, 2771101, 8305373, 24892609, 74608516, 223618304, 670231838, 2008825312, 6020872062, 18045827096, 54087163859, 162110668160, 485879938474, 1456284886944
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2011

Keywords

Examples

			Some solutions for n=5
..3....1....1....1....1....3....3....1....0....1....1....3....2....0....3....3
..3....1....1....2....2....3....3....1....2....1....1....3....2....2....3....3
..1....3....1....2....3....3....1....0....3....0....2....3....3....3....3....0
..3....3....2....1....3....3....3....0....3....0....2....3....3....3....2....1
..3....0....2....0....3....0....3....0....0....0....1....0....1....3....1....1
		

Crossrefs

Column 1 of A203101. Also a column of A228461. Cf. A217883, A217954.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7).
Empirical: G.f.: -x*(1+6*x^2+5*x^4+x^6) / (-1+4*x-6*x^2+10*x^3-5*x^4+6*x^5-x^6+x^7). - R. J. Mathar, May 17 2014

A217949 Number of n-element 0..3 arrays with each element the minimum of 3 adjacent elements of a random 0..3 array of n+2 elements.

Original entry on oeis.org

4, 16, 50, 130, 310, 736, 1821, 4673, 12107, 31103, 79039, 199819, 505477, 1282309, 3259549, 8288613, 21064316, 53497376, 135833020, 344914900, 875983319, 2224986219, 5651490601, 14354263713, 36457137516, 92593166734, 235168023403
Offset: 1

Views

Author

R. H. Hardin, Oct 15 2012

Keywords

Comments

See A217954 and A228461 for more information. - N. J. A. Sloane, Sep 02 2013

Examples

			Some solutions for n=4
..2....0....1....0....1....0....0....0....0....2....2....3....1....2....1....1
..0....3....2....0....1....2....0....2....2....3....2....3....2....2....3....1
..0....0....1....2....1....3....2....2....2....2....2....2....2....3....1....1
..0....0....0....3....0....0....2....1....0....1....0....1....2....2....0....3
		

Crossrefs

Column 3 of A217954. Cf. A217883, A217954.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10).
Empirical: G.f.: -x*(x^3+x^2+2) *(x^6+2*x^5+x^4+4*x^3+4*x^2+2) / ( (x^5+3*x^2-2*x+1) *(x^5+2*x^4+x^2+2*x-1) ). - R. J. Mathar, May 17 2014

A217878 Number of n-element 0..2 arrays with each element the minimum of 3 adjacent elements of a random 0..2 array of n+2 elements.

Original entry on oeis.org

3, 9, 22, 46, 91, 183, 383, 819, 1749, 3699, 7772, 16316, 34325, 72349, 152573, 321621, 677623, 1427389, 3006930, 6335210, 13348399, 28125235, 59258363, 124851495, 263048937, 554220135, 1167698552, 2460253944, 5183565225, 10921353721
Offset: 1

Views

Author

R. H. Hardin, Oct 14 2012

Keywords

Comments

See A228461 and A217883 for more information about the definition.

Examples

			Some solutions for n=4:
..0....1....0....0....2....1....1....1....0....1....2....0....0....0....1....0
..0....1....2....0....1....1....2....2....1....1....2....1....1....0....2....1
..0....2....0....0....1....1....0....2....2....0....2....1....1....2....1....2
..2....2....0....1....1....1....0....1....1....0....1....1....2....2....1....0
		

Crossrefs

Column 3 of A217954. Also a column of A217883. Cf. A217954.

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7).
Empirical g.f.: x*(1 + x^2 + x^3)*(3 + x^2 + x^3) / ((1 - x + x^2 + x^3)*(1 - 2*x - x^4)). - Colin Barker, Feb 23 2018

A228464 Number of arrays of maxima of three adjacent elements of some 0..n array of length 9.

Original entry on oeis.org

44, 383, 1821, 6254, 17487, 42386, 92430, 185727, 349558, 623513, 1063283, 1745172, 2771393, 4276212, 6433004, 9462285, 13640784, 19311619, 26895641, 36904010, 49952067, 66774566, 88242330, 115380395, 149387706, 191658429, 243804943
Offset: 1

Views

Author

R. H. Hardin, Aug 22 2013

Keywords

Comments

See A228461 for explanation of definition.

Examples

			Some solutions for n=4:
  3   0   3   4   4   3   3   4   3   4   2   3   2   0   3   2
  3   0   2   4   4   0   0   2   1   3   4   3   0   0   4   0
  0   0   2   4   0   2   0   2   4   4   4   3   4   0   4   2
  0   0   1   3   1   3   1   2   4   4   4   3   4   4   4   2
  0   0   3   1   1   3   2   2   4   4   0   1   4   4   0   2
  1   0   3   0   4   4   3   2   4   4   0   1   0   4   3   2
  1   3   4   3   4   4   3   1   0   2   1   2   0   3   3   0
		

Crossrefs

Row 7 of A228461. Cf. A217949.

Formula

Empirical: a(n) = (4/315)*n^7 + (1/5)*n^6 + (91/45)*n^5 + (63/8)*n^4 + (2557/180)*n^3 + (517/40)*n^2 + (2419/420)*n + 1 = (n+1) *(n+2) *(32*n^5 + 408*n^4 + 3808*n^3 + 7605*n^2 + 5367*n + 1260)/2520.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(44 + 31*x - 11*x^2 - 54*x^3 + 75*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A228457 Number of arrays of maxima of three adjacent elements of some length n+2 0..4 array.

Original entry on oeis.org

5, 25, 95, 295, 821, 2227, 6254, 18394, 55285, 165563, 489488, 1433536, 4188613, 12268735, 36052642, 106118146, 312319987, 918413167, 2698818913, 7929048609, 23298823959, 68477103061, 201284983126, 591668573686, 1739085580405
Offset: 1

Views

Author

R. H. Hardin Aug 22 2013

Keywords

Comments

Column 4 of A228461

Examples

			Some solutions for n=4
..4....3....2....2....4....3....4....3....4....4....4....3....4....3....1....4
..4....3....1....2....3....3....2....3....4....1....3....1....0....0....0....3
..4....1....2....0....3....0....0....0....2....0....1....1....4....2....4....3
..4....2....4....0....0....3....4....0....0....1....4....0....4....3....4....2
		

Formula

Empirical: a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) +5*a(n-4) -9*a(n-5) +20*a(n-6) +8*a(n-7) +2*a(n-8) +14*a(n-9) +6*a(n-10) +2*a(n-11) +3*a(n-12) +a(n-13)

A228458 Number of arrays of maxima of three adjacent elements of some length n+2 0..5 array.

Original entry on oeis.org

6, 36, 161, 581, 1847, 5615, 17487, 57303, 194064, 659418, 2212695, 7329603, 24138450, 79571792, 263302273, 873867641, 2902730184, 9635417630, 31950864559, 105883279595, 350872561227, 1163005850963, 3855906404239, 12785544028311
Offset: 1

Views

Author

R. H. Hardin, Aug 22 2013

Keywords

Comments

Column 5 of A228461.

Examples

			Some solutions for n=4
..5....4....4....5....3....1....4....4....3....0....5....1....4....5....5....4
..2....2....3....5....3....2....0....0....3....1....2....1....4....3....0....0
..4....3....0....4....1....3....2....3....3....1....0....3....4....4....0....0
..4....4....3....1....3....3....4....4....2....5....3....3....4....4....2....3
		

Crossrefs

Cf. A228461.

Formula

Empirical: a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -14*a(n-5) +49*a(n-6) +8*a(n-7) +15*a(n-8) +54*a(n-9) +21*a(n-10) +20*a(n-11) +26*a(n-12) +10*a(n-13) +5*a(n-14) +4*a(n-15) +a(n-16).

A228459 Number of arrays of maxima of three adjacent elements of some length n+2 0..6 array.

Original entry on oeis.org

7, 49, 252, 1036, 3703, 12453, 42386, 151882, 567835, 2147149, 8034340, 29610140, 108114007, 394245755, 1442791435, 5301606775, 19520651849, 71865418075, 264265863322, 970764224658, 3564641145009, 13091320557593, 48095042423647
Offset: 1

Views

Author

R. H. Hardin Aug 22 2013

Keywords

Comments

Column 6 of A228461

Examples

			Some solutions for n=4
..2....6....4....5....4....4....0....2....0....1....6....6....3....6....1....0
..5....3....2....0....0....2....0....3....0....1....0....2....0....3....1....2
..5....4....2....0....1....1....1....6....0....0....2....1....1....0....2....3
..6....4....2....6....3....6....4....6....3....6....3....0....6....3....5....4
		

Formula

Empirical: a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -14*a(n-4) -14*a(n-5) +98*a(n-6) -6*a(n-7) +63*a(n-8) +151*a(n-9) +59*a(n-10) +107*a(n-11) +124*a(n-12) +60*a(n-13) +56*a(n-14) +44*a(n-15) +17*a(n-16) +9*a(n-17) +5*a(n-18) +a(n-19)
Showing 1-10 of 13 results. Next