A228740 T(n,k) = number of arrays of the median of three adjacent elements of some length n+2 0..k array.
2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 77, 28, 7, 36, 125, 232, 185, 50, 8, 49, 216, 545, 696, 447, 88, 9, 64, 343, 1096, 1943, 2072, 1071, 156, 10, 81, 512, 1981, 4504, 6797, 6130, 2593, 278, 11, 100, 729, 3312, 9191, 17986, 23627, 18378, 6333, 496, 12, 121
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..4..3..2..0..4..2..2..4..1..2..0..0..0..2..1 ..2..0..2..0..0..3..3..4..2..2..2..1..2..2..3..4 ..1..3..0..0..0..1..0..1..3..1..0..0..2..3..4..4 ..3..1..2..1..4..1..1..4..1..2..4..0..2..2..3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..811
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3) +a(n-5)
k=2: [order 14]
k=3: [order 26]
k=4: [order 43]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = (2/3)*n^4 + 4*n^3 + (19/3)*n^2 + 4*n + 1
n=5: [polynomial of degree 5]
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
Comments