cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217955 Triangular array read by rows. T(n,k) is the number of unlabeled graphs on n nodes that have exactly k distinct components (n >= 1).

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 21, 8, 112, 28, 2, 853, 145, 7, 11117, 1022, 34, 261080, 12320, 181, 1, 11716571, 274785, 1266, 12, 1006700565, 12007355, 14106, 63, 164059830476, 1019030127, 293756, 407, 50335907869219, 165091859656, 12362198, 3023, 6, 29003487462848061, 50502058491413, 1032671168, 33035, 51, 31397381142761241960, 29054157815353374, 166176421788, 645086, 399, 63969560113225176176277, 31426486309136268658, 50672459139597, 25830118, 3113
Offset: 1

Views

Author

Geoffrey Critzer, Oct 15 2012

Keywords

Comments

Row sums are A207828.
Column 1 is A001349.
Column 2 is A216785.
Column 3 is A058915.

Examples

			Triangle begins
         1;
         1;
         2,      1;
         6,      2;
        21,      8;
       112,     28,    2;
       853,    145,    7;
     11117,   1022,   34;
    261080,  12320,  181,  1;
  11716571, 274785, 1266, 12;
		

Programs

  • Mathematica
    Needs["Combinatorica`"];max=20;A000088=Table[NumberOfGraphs[n],{n,0,max}];f[x_]=1-Product[1/(1-x^k)^a[k],{k,1,max}];a[0]=a[1]=a[2]=1;coes=CoefficientList[Series[f[x],{x,0,max}],x];sol=First[Solve[Thread[Rest[coes+A000088]== 0]]];cg=Table[a[n],{n,1,max}]/.sol;CoefficientList[Series[Product[(1+y x^i)^cg[[i]],{i,1,max}],{x,0,max}],{x,y}]//Grid (* after code by Jean-François Alcover in A001349 *)

Formula

O.g.f.: Product_{n>=1} (1 + y*x^n)^A001349(n).