A217972 Numbers n such that n^8 + 1 and (n + 2)^8 + 1 are both prime.
2, 240, 288, 508, 540, 680, 916, 1614, 2328, 2872, 2960, 2988, 3402, 3708, 3770, 4760, 4762, 4810, 5370, 5490, 5776, 5878, 6204, 7276, 7890, 8414, 8652, 9418, 9858, 11218, 11896, 12510, 13328, 13938, 14418, 15846, 16422, 17206, 18152, 18954, 19226, 20640
Offset: 1
Examples
2 is in the sequence because 2^8 + 1 = 257 and 4^8 + 1 = 65537 are both prime. 4 is not in the sequence because although 4^8 + 1 is a prime (as we saw above), 6^8 + 1 is not, being a multiple of 17.
Crossrefs
Cf. A006314.
Programs
-
Mathematica
lst = {}; Do[p = n^8 + 1; q = (n + 2)^8 + 1; If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 21000}]; lst (* Lagneau *) Select[Range[10^5], PrimeQ[#^8 + 1] && PrimeQ[(# + 2)^8 + 1] &] (* Alonso del Arte, Oct 17 2012 *)