A218015 Number of primes p such that sqrt(q) - sqrt(p) > 1/n, where q is the prime after p.
0, 6, 22, 41, 75, 132, 186, 258, 330, 416, 511, 613, 724, 860, 1001, 1163, 1372, 1563, 1751, 1965, 2179, 2412, 2685, 2945, 3258, 3581, 3885, 4194, 4525, 4857, 5246, 5644, 6024, 6402, 6767, 7229, 7695, 8177, 8666, 9156, 9674, 10185, 10740, 11283, 11824
Offset: 1
Keywords
Examples
a(1) = 6 because only the primes 3, 7, 13, 23, 31 and 113 satisfy the criterion. As an example, - sqrt(3) + sqrt(5) ~= 0.50401717 which is greater than 1/2.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- Marek Wolf, A Note on the Andrica Conjecture, arXiv:1010.3945 [math.NT], 2010.
Programs
-
Mathematica
lst = {}; p = 2; q = 3; While[p < 10^8, If[ Sqrt[q] - Sqrt[p] > 1/50, AppendTo[lst, {p, Sqrt[q] - Sqrt[p]}]]; p = q; q = NextPrime[q]]; Table[ Length@ Select[ lst, #[[2]] > 1/n &], {n, 50}] nn = 50; t = Table[0, {nn}]; p = 2; q = 3; While[p < 10^8, n = Floor[1/(Sqrt[q] - Sqrt[p])]; If[n <= nn, t[[n]]++]; p = q; q = NextPrime[q]]; Join[{0}, Accumulate[t]] (* T. D. Noe, Oct 18 2012 *)
Comments