A218018 Triangle, read by rows, where T(n,k) = k!*C(n, k)*11^(n-k) for n>=0, k=0..n.
1, 11, 1, 121, 22, 2, 1331, 363, 66, 6, 14641, 5324, 1452, 264, 24, 161051, 73205, 26620, 7260, 1320, 120, 1771561, 966306, 439230, 159720, 43560, 7920, 720, 19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040, 214358881
Offset: 0
Examples
Triangle begins: 1; 11, 1; 121, 22, 2; 1331, 363, 66, 6; 14641, 5324, 1452, 264, 24; 161051, 73205, 26620, 7260, 1320, 120; 1771561, 966306, 439230, 159720, 43560, 7920, 720; 19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040; etc.
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
Programs
-
Magma
[Factorial(n)/Factorial(n-k)*11^(n-k): k in [0..n], n in [0..10]];
-
Mathematica
Flatten[Table[n!/(n-k)! * 11^(n-k), {n, 0, 10}, {k, 0, n}]]
Formula
T(n,k) = 11^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(11*x)*x^k.
Comments