A218028 a(n) is the smallest positive integer k such that k^4 + 1 == 0 mod p, where p is the n-th prime of the form p = 1 + 8*b (see A007519).
2, 3, 10, 12, 33, 18, 10, 9, 12, 8, 4, 60, 5, 85, 70, 45, 31, 79, 92, 170, 43, 76, 152, 59, 59, 139, 256, 64, 62, 40, 44, 188, 177, 18, 14, 156, 227, 192, 231, 223, 79, 31, 75, 362, 7, 239, 338, 402, 6, 235, 114, 72, 342, 511, 15, 483, 310, 355, 104, 292, 232
Offset: 1
Keywords
Examples
a(5) = 33 because 33^4+1 = 1185922 = 2 * 97 * 6113 with A007519(5) = 97.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 521.
Programs
-
Maple
V:= Vector(100): count:= 0: for p from 9 by 8 while count < 100 do if isprime(p) then count:= count+1; V[count]:=min(map(rhs@op,[msolve(k^4+1,p)])) fi od: convert(V,list); # Robert Israel, Mar 13 2018
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 8] == 1, k = 1; While[ ! Mod[k^4 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 300}]; aa
Comments