cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306395 Primes g such that 8*g + 2*p is a primorial for some twin prime p.

Original entry on oeis.org

2, 3, 11, 19, 23, 31, 37, 79, 83, 97, 113, 131, 139, 157, 173, 181, 191, 211, 229, 233, 239, 241, 251, 263, 271, 281, 293, 331, 337, 359, 367, 379, 419, 431, 439, 449, 503, 541, 547, 601, 607, 619, 641, 653, 659, 661, 691, 701, 719, 727, 743, 761, 769, 809
Offset: 1

Views

Author

Michael G. Kaarhus, Feb 12 2019

Keywords

Comments

So far, I find that there exists at least one prime g, and at least one twin prime p in A001097, such that 8g + 2p is a primorial. Some of the related twin primes are rather large. The twin related to a(112), for instance, is 242 digits long. For each n, the program returns the primorial, g, g (mod 30) the twin prime (mod 30) and the twin prime. These data are in a linked file.

Examples

			n |  b# = 8 * g   +  2 * p     greater or lesser
--+----------------------------------------------
1 |  5# = 8 *  2  +  2 *    7  greater
2 |  5# = 8 *  3  +  2 *    3  lesser
3 |  7# = 8 * 11  +  2 *   61  greater
4 |  7# = 8 * 19  +  2 *   29  lesser
5 |  7# = 8 * 23  +  2 *   13  greater
6 | 11# = 8 * 31  +  2 * 1031  lesser
		

Crossrefs

Subsequence of A000040. Supersequence of A218046.

Programs

  • CALC
    #!/usr/bin/calc -q -f
    global b=5, chck=list(), g=1, gt, mg30=2, mg6, mp30=7, n=1, oar=pfact(b)/2,
    tpr=7, ts='greatr', fmt = "%4d%s%5d%s%7d%7d%9d%11s%s%d\n";
    define bookem(an) {
        mp30=mod(tpr, 30);
        printf(fmt, n, '.', b, '#', an, mg30, mp30, ts, '  ', tpr);
        n++; append(chck, an); return(an);
    }
    define incg() {
        top: g=nextprime(g); mg6=mod(g, 6); mg30=mod(g, 30);
        if (mg30 == 13 || mg30 == 17) {goto top;}
        else {gt=g*4; return(mg30);}
    }
    define incb(p) {b=nextprime(p); oar=pfact(b)/2; return(b);}
    print;
    printf(fmt, 'n', '.', 'b', '#', 'g', 'g%30', 'twin%30', 'twin type', '  ', 'twin prime');
    print '----------------------------------------------------------';
    for (i=0; i<=1; i++) {g=nextprime(g); bookem(g); tpr=3; ts='lesser'; mg30=3;}
    b=incb(b); while (g <= b) {incg();}
    while (n <= 35) {
        while (g > b) {
            tpr=oar-gt;
            if (tpr <= 7) {incb(b); continue;}
            if (ptest(tpr, 200)) {
                if (mg6 == 1 && ptest(tpr+2, 200)) {
                        ts='lesser'; bookem(g); break;
                }
                else {if (ptest(tpr-2, 200)) {
                        ts='greatr'; bookem(g); break;
                    }
                }
            }
            incb(b);
        }
        incg();
        while (oar-gt > 0) {b=prevprime(b); oar=pfact(b)/2;}
    }
    print; chs=size(chck)-1; for (i=0; i <= chs; i++) {print i+1, chck[[i]];}
Showing 1-1 of 1 results.