A218085 Let S_5(x) denote the difference in counts of multiples of 5 in the interval [0,x), those with even digit sums in base 4 in one set, those with odd digit sums in base 4 in the other. Then a(n) = (-1)^s_4(n) *(S_5(n) -10*S_5(floor(n/16)) +5*S_5(floor(n/256))), where s_4(n) = A053737(n).
0, -1, 1, -1, -1, 1, -2, 2, 2, -2, 2, -3, -3, 3, -3, 3, 6, -6, 6, -6, -6, 5, -5, 5, 5, -5, 4, -4, -4, 4, -4, 3, -3, 3, -3, 3, 4, -4, 4, -4, -4, 3, -3, 3, 3, -3, 2, -2, 2, -2, 2, -3, -3, 3, -3, 3, 4, -4, 4, -4, -4, 3, -3, 3, 3, -3, 2, -2, -2, 2, -2, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0
Offset: 0
Examples
a(n)=-9 for n=2411, 2412, 2414, 2491, 2492, 2494 (mod 2560); a(n)=9 for n=2413, 2415, 2493, 2495 (mod 2560).
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..2559
- Vladimir Shevelev and Peter J. C. Moses, A family of digit functions with large periods, arXiv:1209.5705 [math.NT], 2012.
Programs
-
Maple
S := proc(n,j,x) a := 0 ; for r from j to x-1 by n do add(d,d=convert(r,base,n-1)) ; a := a+(-1)^% ; end do: a ; end proc: A218085 := proc(n) S(5,0,n)-10*S(5,0,floor(n/16))+5*S(5,0,floor(n/256)) ; %*(-1)^A053737(n) ; end proc: seq(A218085(n),n=0..80) ; # R. J. Mathar, Oct 31 2012
Formula
-9 <= a(n) <= 9, all 19 values are actually achieved.
Comments