A218094 Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 4.
75, 1035, 16025, 267715, 4798983, 92374107, 1913052805, 42483670075, 1008618127825, 25519311555595, 686016182577453, 19536602119711495, 587778832750221385, 18633924653894097385, 620967800006345098353, 21703395396687678061639, 793901738815689934686095
Offset: 4
Keywords
References
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..200
Crossrefs
Column k=4 of A135313.
Programs
-
Maple
t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) end: egf:= t(4)(x)-t(3)(x): a:= n-> n!* coeff(series(egf, x, n+1), x, n): seq(a(n), n=4..20);
-
Mathematica
m = 4; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
Comments