A218097 Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 7.
47293, 1863044, 64432638, 2185028130, 75967708311, 2755081426548, 104970367609107, 4210378306984993, 177779119899659850, 7894403946290257968, 368141001305925742232, 17999569547430255114096, 921163485872922579361467, 49262708358493465135411860
Offset: 7
Keywords
References
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..200
Crossrefs
Column k=7 of A135313.
Programs
-
Maple
t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) end: egf:= t(7)(x)-t(6)(x): a:= n-> n!* coeff(series(egf, x, n+1), x, n): seq(a(n), n=7..22);
-
Mathematica
m = 7; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 22}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
Comments