A218106 Number of transitive reflexive early confluent binary relations R on n+6 labeled elements with max_{x}(|{y : xRy}|) = n.
0, 1, 80963, 25188019, 1913052805, 84934607175, 3085918099231, 104970367609107, 3527548086703069, 119752042470064290, 4150321205365373610, 147666165472551221730, 5409628424337030402002, 204363410596110256258446, 7966805463258438079563650
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
t:= proc(k) option remember; `if` (k<0, 0, unapply (exp (add (x^m/m! *t(k-m)(x), m=1..k)), x)) end: tt:= proc(k) option remember; unapply ((t(k)-t(k-1))(x), x) end: T:= proc(n, k) option remember; coeff (series (tt(k)(x), x, n+1), x, n) *n! end: a:= n-> T(n+6,n): seq (a(n), n=0..20);
-
Mathematica
m = 6; f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]]; (* t = A135302 *) t[0, 0] = 1; t[, 0] = 0; t[n, k_] := t[n, k] = SeriesCoefficient[f[k, x], {x, 0, n}]*n!; a[0] = 0; a[n_] := t[n+m, n]-t[n+m, n-1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 14 2014 *)
Formula
a(n) = A135313(n+6,n).
Comments