A218116 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.
1, 1, 1, 1, 33, 1, 1, 276, 276, 1, 1, 1300, 12695, 1300, 1, 1, 4425, 221495, 221495, 4425, 1, 1, 12201, 2185350, 11534720, 2185350, 12201, 1, 1, 29008, 14794261, 285715550, 285715550, 14794261, 29008, 1, 1, 61776, 76579851, 4276969276, 15781532964
Offset: 0
Examples
G.f.: A(x,y) = 1 + (1+y)*x + (1+33*y+y^2)*x^2 + (1+276*y+276*y^2+y^3)*x^3 + (1+1300*y+12695*y^2+1300*y^3+y^4)*x^4 +... The logarithm of the g.f. equals the series: log(A(x,y)) = (1 + y)*x + (1 + 2^6*y + y^2)*x^2/2 + (1 + 3^6*y + 3^6*y^2 + y^3)*x^3/3 + (1 + 4^6*y + 6^6*y^2 + 4^6*y^3 + y^4)*x^4/4 + (1 + 5^6*y + 10^6*y^2 + 10^6*y^3 + 5^6*y^4 + y^5)*x^5/5 +... Triangle begins: 1; 1, 1; 1, 33, 1; 1, 276, 276, 1; 1, 1300, 12695, 1300, 1; 1, 4425, 221495, 221495, 4425, 1; 1, 12201, 2185350, 11534720, 2185350, 12201, 1; 1, 29008, 14794261, 285715550, 285715550, 14794261, 29008, 1; 1, 61776, 76579851, 4276969276, 15781532964, 4276969276, 76579851, 61776, 1; 1, 120825, 324104715, 44480357175, 478591541712, 478591541712, 44480357175, 324104715, 120825, 1; ... Note that column 1 forms the sum of fifth powers (A000539).
Crossrefs
Programs
-
PARI
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^6*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Comments