cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218147 Degree of minimal polynomial satisfied by exp(8*Pi*phi_2(1/n,1/n)), where phi_2 is defined in the Comments.

Original entry on oeis.org

2, 2, 4, 4, 12, 8, 18, 8, 30, 16, 36, 24, 32, 32, 64, 36, 90, 32, 96, 60, 132, 64, 100, 72, 162, 96, 196, 64, 240, 128, 240, 128, 192, 144, 324, 180, 288, 128, 400, 192, 462, 240, 288, 264, 552, 256, 588, 200, 512, 288, 676, 324, 480, 384, 720, 392, 870, 256
Offset: 3

Views

Author

Jason Kimberley, Oct 21 2012 and Apr 04 2016

Keywords

Comments

Crandall defines phi_2(r_1,r_2) = (1/Pi^2) Sum_{positive & negative odd m_1, m_2} cos(Pi m_1 r_1) cos(Pi m_2 r_2) / (m_1^2+m_2^2).
Lemma: 4a(n) < n^2. Proof: 4a(2) = 2 < 2^2; 4a(4k+1) = 16k^2 < (4k+1)^2; 4a(4k+3) = (4k+2)(4k+4) = (4k+3)^2-1; 4a(p^2 k) = 4p^2 a(pk) < p^2(pk)^2 = (p^2 k)^2; 4 a(jk) = 4 a(j) 4 a(k) < (jk)^2.
Corollary: a(n) <= A198442(n).

References

  • R. Crandall, The Poisson equation and "natural" Madelung constants, preprint 2012 (see section 2 of BBCZ below).

Crossrefs

Programs

Formula

a(n) = A079458(n) / 4, for n > 2. - Jason Kimberley, Nov 14 2015
Watson Ladd has proved that the sequence satisfies the following recurrence relations, which were conjectured by Jason Kimberley:
a(1) = 1/4, a(2) = 1/2, for notational convenience;
a(4k+1) = (2k)*(2k) for prime 4k+1;
a(4k+3) = (2k+1)*(2k+2) for prime 4k+3;
a(p^2 k) = p^2 * a(p*k) for prime p;
a(jk) = 4*a(j)*a(k) for j coprime to k.

Extensions

Entry revised by N. J. A. Sloane, May 15 2016, to take into account the fact that the conjectured formula for this sequence has now been established by Watson Ladd.