A218166 a(n) is the smallest positive integer k such that k^256 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 512*b (see A076339).
62, 10, 24, 3, 15, 98, 325, 6, 25, 52, 114, 135, 330, 53, 21, 55, 248, 365, 66, 304, 125, 41, 60, 426, 157, 27, 116, 511, 788, 27, 36, 152, 185, 317, 112, 228, 490, 563, 99, 198, 828, 436, 585, 1107, 834, 1042, 82, 101, 133, 287, 348, 119, 485, 2323, 148, 133
Offset: 1
Keywords
Crossrefs
Cf. A076339.
Programs
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 512] == 1, k = 1; While[ ! Mod[k^256 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 20000}]; aa
Comments