A218245 Nicolas's sequence, whose nonnegativity is equivalent to the Riemann hypothesis.
2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
p(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = [6/2 - log(log(6))*e^gamma] = [3-0.58319...*1.78107...] = [3-1.038...] = 1.
Programs
-
Mathematica
primorial[n_] := Product[Prime[k], {k, n}]; Table[ With[{p = primorial[n]}, Floor[N[p/EulerPhi[p] - Log[Log[p]]*Exp[EulerGamma]]]], {n, 1, 100}]
Comments