A216868 Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.
3, 4, 13, 67, 560, 6095, 87693, 1491707, 30942952, 795721368, 22614834943, 759296069174, 28510284114397, 1148788714239052, 50932190960133487, 2532582753383324327, 139681393339880282191, 8089483267352888074399, 512986500081861276401709, 34658318003703434434962860
Offset: 1
Keywords
Examples
prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
References
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..350
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory, Vol. 17, No.3 (1983), pp. 375-388.
- J.-L. Nicolas, Small values of the Euler function and the Riemann hypothesis, arXiv:1202.0729 [math.NT], 2012; Acta Arith., Vol. 155 (2012), pp. 311-321.
Programs
-
Mathematica
primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
-
PARI
nicolas(n) = {p = 2; pri = 2;for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", ");p = nextprime(p+1);pri *= p;);} \\ Michel Marcus, Oct 06 2012
-
PARI
A216868(n)={(n=prod(i=1,n,prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))} \\ M. F. Hasler, Oct 06 2012
Comments