cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 19 2012

Keywords

Comments

Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k. T(4,3) = 4: 1234, 1243, 1324, 2134; T(3,0) = T(3,1) = 4: 123, 132, 213, 321; T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341.

Examples

			T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:
  +---+   +------+   +------+   +------+
  | 1 |   | 1  2 |   | 1  3 |   | 1  4 |
  | 2 |   | 3 .--+   | 2 .--+   | 2 .--+
  | 3 |   | 4 |      | 4 |      | 3 |
  | 4 |   +---+      +---+      +---+
  +---+
Triangle T(n,k) begins:
    1;
    1,   1;
    2,   2,   1;
    4,   4,   3,   1;
   10,  10,   9,   4,   1;
   26,  26,  25,  16,   5,   1;
   76,  76,  75,  56,  25,   6,  1;
  232, 232, 231, 197, 105,  36,  7,  1;
  764, 764, 763, 694, 441, 176, 49,  8,  1;
  ...
		

Crossrefs

Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1.
T(2n,n) gives A318289.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
            g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
    t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];
    Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n).
Showing 1-1 of 1 results.