A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
Offset: 0
Examples
T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3: +---+ +------+ +------+ +------+ | 1 | | 1 2 | | 1 3 | | 1 4 | | 2 | | 3 .--+ | 2 .--+ | 2 .--+ | 3 | | 4 | | 4 | | 3 | | 4 | +---+ +---+ +---+ +---+ Triangle T(n,k) begins: 1; 1, 1; 2, 2, 1; 4, 4, 3, 1; 10, 10, 9, 4, 1; 26, 26, 25, 16, 5, 1; 76, 76, 75, 56, 25, 6, 1; 232, 232, 231, 197, 105, 36, 7, 1; 764, 764, 763, 694, 441, 176, 49, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Wikipedia, Involution (mathematics)
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) option remember; `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i]))))) end: T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]]; t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
Comments