A218272 Infinitesimal generator for transpose of the Pascal matrix A007318 (as upper triangular matrices).
0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0
Offset: 0
Examples
Matrix T begins 0,1; 0,0,2; 0,0,0,3; 0,0,0,0,4; 0,0,0,0,0,5; 0,0,0,0,0,0,6; ...
Links
Programs
-
Mathematica
Table[PadLeft[{n+1}, n+2], {n, 0, 11}] // Flatten (* Jean-François Alcover, Apr 30 2014 *)
Formula
The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):
1) b(n) = (n+1) * a(n+1),
2) B(x) = D A(x), or
3) EB(x) = DxD EA(x),
where D is the derivative w.r.t. x.
So the exponentiated operator can be characterized as
4) exp(t*T) A(x) = exp(t*D) A(x) = A(x+t),
5) exp(t*T) EA(x) = exp(t*DxD) EA(x) = exp[x*a/(1+t*a)]/(1+t*a),
= Sum_{n>=0} (1+t*a)^(-n-1) (x*a)^n/n!, where umbrally
a^n *(1+t*a)^(-n-1) = Sum_{j>0} binomial(n+j,j)a(n+j)t^j,
6) exp(t*T) EA(x) = Sum_{n>=0} a(n) t^n Lag(n,-x/t),
where Lag(n,x) are the Laguerre polynomials (A021009), or
7) [exp(t*T) * a]_n = [M(t) * a]_n
= Sum_{j>=0} binomial(n+j,j)a(n+j)t^j.
Comments