cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218274 Number of n-step paths from (0,0) to (1,0) where all diagonal, vertical and horizontal steps are allowed.

Original entry on oeis.org

0, 1, 4, 27, 168, 1140, 7800, 54845, 390320, 2815344, 20494320, 150442908, 1111782672, 8264558016, 61743361680, 463306724595, 3489942222624, 26378657835816, 199991245341888, 1520403553182800, 11587257160313120, 88506896001503616, 677426230547667744
Offset: 0

Views

Author

Jon Perry, Nov 01 2012

Keywords

Comments

Equivalent to which linear combinations of (-1,-1), (-1,0), (-1,1), (0,1), (0,-1), (1,1), (1,0), (1,-1) equal (1,0).

Examples

			a(2) = 4 because we have [0,1]+[1,-1], [1,1]+[0,-1] and the y-negatives [0,-1]+[1,1], [1,-1]+[0,1].
		

Crossrefs

Cf. A094061.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n^2,
          ((9*n^4-9*n^3-8*n^2+4*n) *a(n-1)
          +4*(n-1)*(27*n^3-84*n^2+80*n-21) *a(n-2)
          +32*(3*n-1)*(n-1)*(n-2)^2 *a(n-3))/ (n*(n-1)*(n+1)*(3*n-4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    a[n_] := a[n] = If[n<3, n^2,
         ((9n^4-9n^3-8n^2+4n) a[n-1] +
         4(n-1)(27n^3-84n^2+80n-21) a[n-2] +
         32(3n-1)(n-1)(n-2)^2 a[n-3]) /
         (n(n-1)(n+1)(3n-4))];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[2]:4$
    a[n]:= ((9*n^4-9*n^3-8*n^2+4*n)*a[n-1]+4*(n-1)*(27*n^3-84*n^2+80*n-21)*a[n-2]+32*(3*n-1)*(n-1)*(n-2)^2 *a[n-3])/(n*(n-1)*(n+1)*(3*n-4))$
    A218274(n):=a[n]$
    makelist(A218274(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Extensions

More terms from Joerg Arndt, Nov 02 2012