A218274 Number of n-step paths from (0,0) to (1,0) where all diagonal, vertical and horizontal steps are allowed.
0, 1, 4, 27, 168, 1140, 7800, 54845, 390320, 2815344, 20494320, 150442908, 1111782672, 8264558016, 61743361680, 463306724595, 3489942222624, 26378657835816, 199991245341888, 1520403553182800, 11587257160313120, 88506896001503616, 677426230547667744
Offset: 0
Examples
a(2) = 4 because we have [0,1]+[1,-1], [1,1]+[0,-1] and the y-negatives [0,-1]+[1,1], [1,-1]+[0,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A094061.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, n^2, ((9*n^4-9*n^3-8*n^2+4*n) *a(n-1) +4*(n-1)*(27*n^3-84*n^2+80*n-21) *a(n-2) +32*(3*n-1)*(n-1)*(n-2)^2 *a(n-3))/ (n*(n-1)*(n+1)*(3*n-4))) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
-
Mathematica
a[n_] := a[n] = If[n<3, n^2, ((9n^4-9n^3-8n^2+4n) a[n-1] + 4(n-1)(27n^3-84n^2+80n-21) a[n-2] + 32(3n-1)(n-1)(n-2)^2 a[n-3]) / (n(n-1)(n+1)(3n-4))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
-
Maxima
a[0]:0$ a[1]:1$ a[2]:4$ a[n]:= ((9*n^4-9*n^3-8*n^2+4*n)*a[n-1]+4*(n-1)*(27*n^3-84*n^2+80*n-21)*a[n-2]+32*(3*n-1)*(n-1)*(n-2)^2 *a[n-3])/(n*(n-1)*(n+1)*(3*n-4))$ A218274(n):=a[n]$ makelist(A218274(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
Extensions
More terms from Joerg Arndt, Nov 02 2012
Comments