cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218290 Multiples of 5 such that the sum of their digits is also a multiple of 5.

Original entry on oeis.org

5, 50, 55, 140, 145, 190, 195, 230, 235, 280, 285, 320, 325, 370, 375, 410, 415, 460, 465, 500, 505, 550, 555, 640, 645, 690, 695, 730, 735, 780, 785, 820, 825, 870, 875, 910, 915, 960, 965, 1040, 1045, 1090, 1095, 1130, 1135, 1180, 1185, 1220, 1225, 1270
Offset: 1

Views

Author

Bruno Berselli, Oct 25 2012

Keywords

Examples

			145 is a multiple of 5, and its digits, 1, 4, 5, add up to 10, which is also a multiple of 5. [_Alonso del Arte_, Oct 27 2012]
		

Crossrefs

Cf. multiples of k with digit sum divisible by k: A008585 (k = 3), A008591 (k = 9), A062753 (k = 4), A179082 (k = 2), A216994 (k = 7), A216995 (k = 11), A216997 (k = 8), A218291 (k = 6), A218292 (k = 10).

Programs

  • Magma
    [n: n in [5..1300 by 5] | IsZero(&+Intseq(n) mod 5)];
  • Mathematica
    Select[ Range[5, 1300, 5], Mod[ Total[ IntegerDigits[#]], 5] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)

A218291 Multiples of 6 such that the sum of their digits is also a multiple of 6.

Original entry on oeis.org

6, 24, 42, 48, 60, 66, 84, 114, 132, 138, 150, 156, 174, 192, 198, 204, 222, 228, 240, 246, 264, 282, 288, 312, 318, 330, 336, 354, 372, 378, 390, 396, 402, 408, 420, 426, 444, 462, 468, 480, 486, 510, 516, 534, 552, 558, 570, 576, 594, 600, 606, 624, 642, 648
Offset: 1

Views

Author

Bruno Berselli, Oct 25 2012

Keywords

Examples

			48 is a multiple of 6, and 4+8=12 is also a multiple of 6.
		

Crossrefs

Subsequence of A179082.
Cf. multiples of k with digit sum divisible by k: A008585 (k=3), A008591 (k=9), A062753 (k=4), A179082 (k=2), A216994 (k=7), A216995 (k=11), A216997 (k=8), A218290 (k=5), A218292 (k=10).

Programs

  • Magma
    [n: n in [6..700 by 6] | IsZero(&+Intseq(n) mod 6)];
  • Mathematica
    Select[ Range[6, 700, 6], Mod[ Total[ IntegerDigits[#]], 6] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)

A333834 Multiples of 10 whose sum of digits is 10.

Original entry on oeis.org

190, 280, 370, 460, 550, 640, 730, 820, 910, 1090, 1180, 1270, 1360, 1450, 1540, 1630, 1720, 1810, 1900, 2080, 2170, 2260, 2350, 2440, 2530, 2620, 2710, 2800, 3070, 3160, 3250, 3340, 3430, 3520, 3610, 3700, 4060, 4150, 4240, 4330, 4420, 4510
Offset: 1

Views

Author

Bernard Schott, Apr 07 2020

Keywords

Comments

If m is a term, 10*m is also a term.
Intersection of A052224 (sum of digits = 10) and A008592 (multiples of 10).

Examples

			2440 = 10 * 244 and 2 + 4 + 4 + 0 = 10, hence 2440 is a term.
		

Crossrefs

Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), this sequence (k=10), A283742 (k=11), A333814 (k=12), A283737 (k=13).
Subsequence of A218292.
Cf. A008592 (multiples of 10), A052224 (sum of digits = 10).
Cf. A057147 (a(n) = n times sum of digits of n)

Programs

  • Mathematica
    Select[10 * Range[500], Plus @@ IntegerDigits[#] == 10 &] (* Amiram Eldar, Apr 07 2020 *)

Formula

a(n) = 10*A052224(n). - Charles R Greathouse IV, Apr 07 2020
Showing 1-3 of 3 results.