A218294 G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(2*n^2).
1, 2, 10, 82, 866, 10482, 138698, 1957346, 29024642, 448005922, 7153738058, 117681081522, 1988787934818, 34465473701522, 611806834645642, 11118408274591938, 206835953956603394, 3939803761941599042, 76880490874588995978, 1538019374456939130386
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 10*x^2 + 82*x^3 + 866*x^4 + 10482*x^5 + 138698*x^6 +... where A(x) = 1 + 2*x*A(x)^2 + 2*x^2*A(x)^8 + 2*x^3*A(x)^18 + 2*x^4*A(x)^32 + ...
Programs
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(2*m^2))); polcoeff(A, n)} for(n=0,30,print1(a(n),", "))
Comments