A218299 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..2*n} A084606(n,k)^2 * x^k * A(x)^k ), where A084606(n,k) = [x^k] (1 + 2*x + 2*x^2)^n.
1, 1, 5, 21, 109, 573, 3209, 18425, 108649, 652425, 3979805, 24583853, 153488501, 966993893, 6139832385, 39249227569, 252400089361, 1631676380497, 10597809743477, 69123464993925, 452567027633853, 2973269053045197, 19595030047168569, 129509530910221737
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 109*x^4 + 573*x^5 + 3209*x^6 +... Let A = g.f. A(x), then the logarithm of the g.f. equals the series: log(A(x)) = (1 + 2^2*x*A + 2^2*x^2*A^2)*x + (1 + 4^2*x*A + 8^2*x^2*A^2 + 8^2*x^3*A^3 + 4^2*x^4*A^4)*x^2/2 + (1 + 6^2*x*A + 18^2*x^2*A^2 + 32^2*x^3*A^3 + 36^2*x^4*A^4 + 24^2*x^5*A^5 + 8^2*x^6*A^6)*x^3/3 + (1 + 8^2*x*A + 32^2*x^2*A^2 + 80^2*x^3*A^3 + 136^2*x^4*A^4 + 160^2*x^5*A^5 + 128^2*x^6*A^6 + 64^2*x^7*A^7 + 16^2*x^8*A^8)*x^4/4 +... which involves the squares of the trinomial coefficients A084606(n,k): 1; 1, 2, 2; 1, 4, 8, 8, 4; 1, 6, 18, 32, 36, 24, 8; 1, 8, 32, 80, 136, 160, 128, 64, 16; 1, 10, 50, 160, 360, 592, 720, 640, 400, 160, 32; ...
Programs
-
PARI
/* G.f. A(x) using the squares of the trinomial coefficients A084606: */ {A084606(n, k)=polcoeff((1 + 2*x + 2*x^2)^n, k)} {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A084606(m, k)^2*x^k*(A+x*O(x^n))^k)*x^m/m))); polcoeff(A, n)} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n)=local(A=serreverse( x*(1 - 2*x^2)^2 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4 +x*O(x^n))))/x);polcoeff(A,n)} for(n=0,20,print1(a(n),", "))
Formula
G.f. satisfies:
(1) A(x) = (1 + x*A(x))*(1 + 4*x^3*A(x)^3)*(1 + 4*x^4*A(x)^4)/(1 - 2*x^2*A(x)^2)^2.
(3) A(x) = (1/x)*Series_Reversion( x*(1 - 2*x^2)^2 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4)) ).