cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218325 Even heptagonal pyramidal numbers.

Original entry on oeis.org

8, 26, 60, 196, 308, 456, 880, 1166, 1508, 2380, 2920, 3536, 5016, 5890, 6860, 9108, 10396, 11800, 14976, 16758, 18676, 22940, 25296, 27808, 33320, 36330, 39516, 46436, 50180, 54120, 62608, 67166, 71940, 82156, 87608, 93296, 105400, 111826, 118508, 132660
Offset: 1

Views

Author

Ant King, Oct 26 2012

Keywords

Examples

			The sequence of heptagonal pyramidal numbers A002413(n) begins 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, … As the third even term is 60, then a(3) = 60.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{8,26,60,196,308,456,880,1166,1508,2380},40]

Formula

a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 320.
a(n) = (phi(n)+3)*(phi(n)+12)(5*phi(n)-3)/4374, where phi(n) = 12*n - 3*cos(2*n*pi/3) + sqrt(3)*sin(2*n*pi/3).
G. f. 2*x*(4+9*x+17*x^2+56*x^3+29*x^4+23*x^5+20*x^6+2*x^7) / ((1-x)^4*(1+x+x^2)^3).