cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218346 Numbers of the form a^a + b^b, with a > b > 0.

Original entry on oeis.org

5, 28, 31, 257, 260, 283, 3126, 3129, 3152, 3381, 46657, 46660, 46683, 46912, 49781, 823544, 823547, 823570, 823799, 826668, 870199, 16777217, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420490, 387420493, 387420516, 387420745, 387423614, 387467145
Offset: 1

Views

Author

Alex Ratushnyak, Oct 26 2012

Keywords

Comments

Subsequence of A066846.

Examples

			a(1) = 2^2 + 1^1 = 5,
a(2) = 3^3 + 1^1 = 28,
a(3) = 2^2 + 3^3 = 31.
		

Crossrefs

Cf. A068145: primes of the form a^a + b^b.

Programs

  • Maple
    N:= 10^12: # for terms <= N
    S:= NULL:
    for m from 1 do v:= m^m; if v > N then break fi; S:= S,v od:
    sort(convert(select(`<=`,{seq(seq(S[i]+S[j],j=i+1..m-1),i=1..m-1)},N),list)); # Robert Israel, Aug 10 2020
  • Mathematica
    nn = 10; Select[Union[Flatten[Table[a^a + b^b, {a, nn}, {b, a + 1, nn}]]], # <= nn^nn + 1 &] (* T. D. Noe, Nov 15 2012 *)
  • Python
    from itertools import count, takewhile
    def aupto(lim):
      pows = list(takewhile(lambda x: x < lim, (i**i for i in count(1))))
      sums = (aa+bb for i, bb in enumerate(pows) for aa in pows[i+1:])
      return sorted(set(s for s in sums if s <= lim))
    print(aupto(387467145))  # Michael S. Branicky, May 28 2021