A218358 Minimal order of degree-n irreducible polynomials over GF(7).
1, 4, 9, 5, 2801, 36, 29, 64, 27, 11, 1123, 13, 16148168401, 113, 31, 17, 14009, 108, 419, 55, 261, 23, 47, 73, 2551, 53, 81, 145, 59, 99, 311, 256, 3631, 56036, 81229, 135, 223, 1676, 486643, 41, 83, 1017, 166003607842448777, 115, 837, 188, 13722816749522711
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..430
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Programs
-
Maple
with(numtheory): M:= proc(n) M(n):= divisors(7^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: a:= n-> min(M(n)[]): seq(a(n), n=1..42);
-
Mathematica
M[n_] := M[n] = Divisors[7^n - 1]~Complement~U[n - 1]; U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]]; a[n_] := Min[M[n]]; Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)
Comments