cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218361 Minimal order of degree-n irreducible polynomials over GF(17).

Original entry on oeis.org

1, 3, 307, 5, 88741, 7, 25646167, 128, 19, 11, 2141993519227, 35, 212057, 22796593, 27243487, 256, 10949, 57, 229, 25, 43, 23, 47, 73, 2551, 53, 433, 5766433, 59, 31, 4093, 257, 67, 32847, 966211, 37, 149, 457, 157, 41, 83, 49, 1549, 89, 3691, 141
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 17^n.

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..35);
  • Mathematica
    M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    a[n_] := a[n] = Min[M[n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 21 2022, after Maple code *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(17^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A218338(n,1) = A213224(n,7).