A218361 Minimal order of degree-n irreducible polynomials over GF(17).
1, 3, 307, 5, 88741, 7, 25646167, 128, 19, 11, 2141993519227, 35, 212057, 22796593, 27243487, 256, 10949, 57, 229, 25, 43, 23, 47, 73, 2551, 53, 433, 5766433, 59, 31, 4093, 257, 67, 32847, 966211, 37, 149, 457, 157, 41, 83, 49, 1549, 89, 3691, 141
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..372
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Programs
-
Maple
with(numtheory): M:= proc(n) M(n):= divisors(17^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: a:= n-> min(M(n)[]): seq(a(n), n=1..35);
-
Mathematica
M[n_] := M[n] = Divisors[17^n-1] ~Complement~ U[n-1]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; a[n_] := a[n] = Min[M[n]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 21 2022, after Maple code *)
Comments