A218391 Let k be the n-th odd composite, then a(n) is the smallest w*x such that w + x = (k-1)/2, y + z = (k+1)/2, and w*x = y*z.
4, 12, 24, 36, 40, 60, 72, 84, 112, 144, 144, 180, 180, 220, 252, 264, 312, 360, 364, 432, 420, 504, 480, 540, 544, 612, 684, 792, 760, 864, 900, 840, 936, 924, 1080, 1012, 1104, 1260, 1260, 1200, 1300, 1440, 1404, 1584, 1512, 1764, 1624, 1836, 1740, 1860
Offset: 1
Keywords
Examples
15=7+8 (partition is x,x+1) col 1 sum(to products) 1*6=6 2*5=10 3*4=12 col 2 sum(to products) 1*7=7 2*6=12 3*5=15 4*4=16 There is an overlapping product, and the lowest is 12. This indicates the original N of 15 is composite.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- John F. Richardson, A Property of Odd Composites, Math Forums, 2012.
Crossrefs
Cf. A071904.
Programs
-
PARI
do(n)=my(X=vector(n\4,i,i*(n\2-i)),Y=vector((n+1)\4,i,i*(n\2-i+1)),i=1,j=1);while(X[i]!=Y[j],if(X[i]
Charles R Greathouse IV, Oct 28 2012
Comments