cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218394 Numbers such that sum(i<=n) binomial(n,i)*binomial(2*n-2*i, n-i) is not divisible by 5.

Original entry on oeis.org

1, 5, 7, 11, 25, 27, 31, 35, 37, 51, 55, 57, 61, 125, 127, 131, 135, 137, 151, 155, 157, 161, 175, 177, 181, 185, 187, 251, 255, 257, 261, 275, 277, 281, 285, 287, 301, 305, 307, 311, 625, 627, 631, 635, 637, 651, 655, 657, 661, 675, 677, 681, 685, 687, 751
Offset: 1

Views

Author

Michel Marcus, Oct 28 2012

Keywords

Comments

a(n) = A037453(2*n-1) (proved by Schur, see link).

Crossrefs

Cf. A037453.

Programs

  • PARI
    lista(nb) = {for (n=1, nb, if (sum(i=1,n, binomial(n, i)*binomial(2*n-2*i,n-i)) % 5 != 0, print1(n, ", ")););}
    
  • PARI
    a(n) = {2*n-1+2*sum(i=1,n, 5^(i-1)*floor((2*n-1)/3^i))}
    
  • Python
    from gmpy2 import digits
    def A218394(n): return int(digits((n<<1)-1,3),5) # Chai Wah Wu, Aug 10 2025

Formula

a(n) = 2*n - 1 + 2*sum{i=1,n} 5^(i-1)*floor((2*n-1)/3^i).