A218394 Numbers such that sum(i<=n) binomial(n,i)*binomial(2*n-2*i, n-i) is not divisible by 5.
1, 5, 7, 11, 25, 27, 31, 35, 37, 51, 55, 57, 61, 125, 127, 131, 135, 137, 151, 155, 157, 161, 175, 177, 181, 185, 187, 251, 255, 257, 261, 275, 277, 281, 285, 287, 301, 305, 307, 311, 625, 627, 631, 635, 637, 651, 655, 657, 661, 675, 677, 681, 685, 687, 751
Offset: 1
Keywords
Links
- W. Shur, The last digit of C(2*n,n) and Sigma C(n,i)*C(2*n-2*i,n-i), The Electronic Journal of Combinatorics, #R16, Volume 4, Issue 2 (1997).
Crossrefs
Cf. A037453.
Programs
-
PARI
lista(nb) = {for (n=1, nb, if (sum(i=1,n, binomial(n, i)*binomial(2*n-2*i,n-i)) % 5 != 0, print1(n, ", ")););}
-
PARI
a(n) = {2*n-1+2*sum(i=1,n, 5^(i-1)*floor((2*n-1)/3^i))}
-
Python
from gmpy2 import digits def A218394(n): return int(digits((n<<1)-1,3),5) # Chai Wah Wu, Aug 10 2025
Formula
a(n) = 2*n - 1 + 2*sum{i=1,n} 5^(i-1)*floor((2*n-1)/3^i).
Comments