A218464 Numbers m = (Sum_(j=1..k) tau(j)) with m divisible by k, where tau(j) is the number of divisors of j.
1, 8, 10, 45, 168, 176, 188, 605, 2016, 2040, 2082, 6510, 20384, 62433, 62523, 564542, 4928261, 4928703, 4928729, 42018075, 351871865, 1012753620, 1012755546, 2905896480, 2905898228, 192057921660, 1542529159875, 12309661243665, 12309661255437, 34700429419432
Offset: 1
Keywords
Examples
10 is in sequence because k=5 divides the sum of tau(1) + tau(2) + tau(3) + tau(4) + tau(5) = 1+2+2+3+2 = 10.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..39 (based on A050226 values)
Programs
-
Maple
with(numtheory); A218464:=proc(q) local n; a:=0; for n from 1 to q do a:=a+tau(n) if type(a/n,integer) then print(a); fi; od; end: A218464 (10^10); # Paolo P. Lava, Mar 26 2013
-
Mathematica
sm = 0; t = {}; Do[sm = sm + DivisorSigma[0, n]; If[Mod[sm, n] == 0, AppendTo[t, sm]], {n, 1000}]; t (* T. D. Noe, Mar 27 2013 *)
Extensions
a(22)-a(30) from Giovanni Resta, Mar 28 2013
Comments