cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218506 Number of partitions of n in which any two parts differ by at most 4.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 20, 25, 34, 41, 54, 64, 81, 95, 118, 136, 165, 189, 226, 256, 301, 339, 395, 441, 507, 564, 644, 711, 804, 885, 995, 1089, 1215, 1326, 1473, 1600, 1766, 1914, 2105, 2272, 2486, 2678, 2921, 3136, 3406, 3650, 3954, 4225, 4560, 4865
Offset: 0

Views

Author

Alois P. Heinz, Oct 31 2012

Keywords

Crossrefs

Column k=4 of A194621.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0,
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k))))
        end:
    a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 4), i=1..n):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]];
    a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 4], {i, 1, n}];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)
  • PARI
    Vec((x^14-x^13-x^12+2*x^9-x^6-x^5+x^4-1)/((x-1)^5*(x+1)^3*(x^2+1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 05 2015

Formula

G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..4} (1-x^(i+j)).
G.f.: (x^14-x^13-x^12+2*x^9-x^6-x^5+x^4-1) / ((x-1)^5*(x+1)^3*(x^2+1)^2*(x^2+x+1)). - Colin Barker, Mar 05 2015