A218510 Number of partitions of n in which any two parts differ by at most 8.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 96, 127, 161, 208, 260, 330, 407, 509, 621, 765, 925, 1127, 1350, 1627, 1934, 2310, 2725, 3227, 3782, 4446, 5178, 6044, 7000, 8122, 9355, 10791, 12370, 14195, 16196, 18494, 21012, 23887, 27029, 30596, 34492, 38894
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=8 of A194621.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k)))) end: a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 8), i=1..n): seq(a(n), n=0..80);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]]; a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 8], {i, 1, n}]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)
Formula
G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..8} (1-x^(i+j)).