A218512 Number of partitions of n in which any two parts differ by at most 10.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 171, 223, 282, 362, 453, 572, 709, 884, 1084, 1337, 1626, 1984, 2394, 2896, 3468, 4162, 4951, 5897, 6972, 8249, 9696, 11402, 13330, 15586, 18131, 21090, 24417, 28264, 32580, 37541, 43097, 49449, 56544
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Crossrefs
Column k=10 of A194621.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k)))) end: a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 10), i=1..n): seq(a(n), n=0..80);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]]; a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 10], {i, 1, n}]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
Formula
G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..10} (1-x^(i+j)).