cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218542 Number of times when an even number is encountered, when going from 2^(n+1)-1 to (2^n)-1 using the iterative process described in A071542.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 12, 23, 44, 86, 163, 308, 576, 1074, 1991, 3680, 6800, 12626, 23644, 44751, 85567, 164941, 319694, 621671, 1211197, 2362808, 4614173, 9018299, 17635055, 34486330, 67408501, 131642673, 256795173, 500346954, 973913365, 1894371802, 3683559071
Offset: 0

Views

Author

Antti Karttunen, Nov 02 2012

Keywords

Comments

Ratio a(n)/A213709(n) develops as: 1, 0, 0.5, 0.333..., 0.4, 0.333..., 0.471..., 0.400..., 0.426..., 0.449..., 0.480..., 0.494..., 0.502..., 0.501..., 0.497..., 0.489..., 0.479..., 0.469..., 0.461..., 0.455..., 0.453..., 0.454..., 0.458..., 0.464..., 0.469..., 0.475..., 0.480..., 0.484..., 0.488..., 0.492..., 0.496..., 0.499..., 0.502..., 0.503..., 0.505..., 0.505..., 0.505..., 0.505..., 0.505..., 0.504..., 0.504..., 0.503..., 0.503..., 0.502..., 0.502..., 0.502..., 0.503..., 0.503... (See further comments at A218543).

Examples

			(2^0)-1 (0) is reached from (2^1)-1 (1) with one step by subtracting A000120(1) from 1. Zero is an even number, so a(0)=1.
(2^1)-1 (1) is reached from (2^2)-1 (3) with one step by subtracting A000120(3) from 3. One is not an even number, so a(1)=0.
(2^2)-1 (3) is reached from (2^3)-1 (7) with two steps by first subtracting A000120(7) from 7 -> 4, and then subtracting A000120(4) from 4 -> 3. Four is an even number, but three is not, so a(2)=1.
		

Crossrefs

Cf. A219662 (analogous sequence for factorial number system).

Formula

a(n) = Sum_{i=A218600(n) .. (A218600(n+1)-1)} A213728(i).
a(n) = A213709(n) - A218543(n).

Extensions

More terms from Antti Karttunen, Jun 05 2013