A218543 Number of times when an odd number is encountered, when going from 2^(n+1)-1 to (2^n)-1 using the iterative process described in A071542.
0, 1, 1, 2, 3, 6, 9, 18, 31, 54, 93, 167, 306, 574, 1088, 2081, 3998, 7696, 14792, 28335, 54049, 102742, 194948, 369955, 703335, 1340834, 2563781, 4915378, 9444799, 18180238, 35047841, 67660623, 130806130, 253252243, 491034479, 953404380, 1853513715, 3607440034
Offset: 0
Keywords
Examples
(2^0)-1 (0) is reached from (2^1)-1 (1) with one step by subtracting A000120(1) from 1. Zero is not an odd number, so a(0)=0. (2^1)-1 (1) is reached from (2^2)-1 (3) with one step by subtracting A000120(3) from 3. One is an odd number, so a(1)=1. (2^2)-1 (3) is reached from (2^3)-1 (7) with two steps by first subtracting A000120(7) from 7 -> 4, and then subtracting A000120(4) from 4 -> 3. Four is not an odd number, but three is, so a(2)=1.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..47
- OEIS Server, Sequence plotted together with A218542 showing how their ratio develops.
Comments