A218551 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*A(x^k)^n) ).
1, 1, 2, 5, 13, 37, 106, 322, 987, 3119, 9985, 32499, 106910, 355524, 1191960, 4026739, 13689783, 46807685, 160842381, 555175377, 1923970425, 6691769948, 23351250882, 81729943060, 286842588316, 1009256119760, 3559337691300, 12579738946685, 44549347255523, 158058591860684
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 106*x^6 + 322*x^7 +... where log(A(x)) = x/(1*(1-x*A(x))*(1-x^2*A(x^2))*(1-x^3*A(x^3))*...) + x^2/(2*(1-x^2*A(x)^2)*(1-x^4*A(x^2)^2)*(1-x^6*A(x^3)^2)*...) + x^3/(3*(1-x^3*A(x)^3)*(1-x^6*A(x^2)^3)*(1-x^9*A(x^3)^3)*...) + x^4/(4*(1-x^4*A(x)^4)*(1-x^8*A(x^2)^4)*(1-x^12*A(x^3)^4)*...) +... Explicitly, log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 106*x^5/5 + 342*x^6/6 + 1198*x^7/7 + 4071*x^8/8 + 14356*x^9/9 + 50408*x^10/10 +...
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m/m*prod(k=1,n\m+1,1/(1-x^(m*k)*subst(A,x,x^k +x*O(x^n))^m)))));polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments