A218579 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last zero at position k-1.
1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 8, 10, 15, 53, 15, 26, 32, 38, 53, 217, 53, 99, 122, 142, 164, 217, 1014, 217, 433, 537, 619, 704, 797, 1014, 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335, 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240
Offset: 1
Examples
Triangle starts: [ 1] 1; [ 2] 1, 1; [ 3] 2, 1, 2; [ 4] 5, 2, 3, 5; [ 5] 15, 5, 8, 10, 15; [ 6] 53, 15, 26, 32, 38, 53; [ 7] 217, 53, 99, 122, 142, 164, 217; [ 8] 1014, 217, 433, 537, 619, 704, 797, 1014; [ 9] 5335, 1014, 2143, 2683, 3069, 3464, 3876, 4321, 5335; [10] 31240, 5335, 11854, 15015, 17063, 19140, 21294, 23522, 25905, 31240; ...
Links
- Alois P. Heinz, Rows n = 1..100, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, add(b(n-1, j, t+`if`(j>i, 1, 0), max(-1, k-1)), j=`if`(k>=0, 0, 1)..`if`(k=0, 0, t+1))) end: T:= (n, k)-> b(n-1, 0, 0, k-2): seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Nov 16 2012
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, Sum[b[n-1, j, t + If[j>i, 1, 0], Max[-1, k-1]], {j, If[k >= 0, 0, 1], If[k == 0, 0, t+1]}]]; T[n_, k_] := b[n-1, 0, 0, k-2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
Comments