A218584 Numbers n such that 2^A000010(n*x) == 1 (mod (n*x)^2), where x = 3837523 is the product of the first 2 Wieferich primes 1093 and 3511.
1, 3, 5, 7, 9, 13, 15, 21, 27, 35, 39, 45, 63, 65, 81, 91, 105, 117, 135, 169, 189, 195, 273, 315, 351, 405, 455, 507, 567, 585, 819, 845, 945, 1053, 1183, 1365, 1521, 1701, 1755, 2457, 2535, 2835, 3159, 3549, 4095, 4563, 5265, 5915, 7371, 7605, 8505, 10647
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..74
Programs
-
Mathematica
x = 3837523; Select[Range[1, 10647, 2], PowerMod[2, EulerPhi[#*x], (#*x)^2] == 1 &]
-
PARI
is(n)=Mod(2,(3837523*n)^2)^eulerphi(3837523*n)==1 \\ Charles R Greathouse IV, Mar 05 2013
Comments