cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218621 a(n) = unique divisor d of n such that d + (n/d - 1)/2 is minimal and integral.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 3, 16, 1, 2, 1, 4, 3, 2, 1, 8, 5, 2, 3, 4, 1, 6, 1, 32, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 16, 7, 10, 3, 4, 1, 6, 5, 8, 3, 2, 1, 4, 1, 2, 7, 64, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 5, 4, 7, 6, 1, 16, 9, 2, 1, 4, 5
Offset: 1

Views

Author

L. Edson Jeffery, Feb 18 2013

Keywords

Comments

Differs from A079891 starting at a(18).
For integers M, k, with 0<=k<=M, consider a representation of n as n = T(M) - T(M-k) = M + (M-1) + ... + (M-k+1), in which k is maximal, where T(r) = r*(r+1)/2 is the r-th triangular number. Then k = A109814(n), and M = A212652(n) = a(n) + (n/a(n) - 1)/2 is minimal.
Conjecture. For n, p, v, j natural numbers, the conditions on a(n) seem to be the following:
1. If n is an odd prime, then a(n) = 1.
2. If n is odd and composite, then
a(n) = max(p : p | n, p <= sqrt(n), p is a prime).
3. If n is equal to a power of 2, then a(n) = n.
4. If n = 2^j*v, with v odd, v>1 and j>1, then a(n) = 2^j.
5. If n = 2*v, with v odd and composite, then
a(n) = 2*p, where p is the least prime such that p | v.
6. If n = 2*p, for p an odd prime, then a(n) = 2.

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; mn = Infinity; best = 0; Do[q = i + (n/i - 1)/2; If[IntegerQ[q] && q < mn, mn = q; best = i], {i, d}]; best, {n, 100}] (* T. D. Noe, Feb 21 2013 *)