cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A218663 T(n,k) = Hilltop maps: number of n X k binary arrays indicating the locations of corresponding elements not exceeded by any king-move neighbor in a random 0..1 n X k array.

Original entry on oeis.org

1, 3, 3, 5, 15, 5, 9, 57, 57, 9, 17, 225, 417, 225, 17, 31, 891, 3249, 3249, 891, 31, 57, 3519, 25533, 50625, 25533, 3519, 57, 105, 13905, 199489, 793881, 793881, 199489, 13905, 105, 193, 54945, 1560161, 12383361, 24879489, 12383361, 1560161, 54945
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2012

Keywords

Comments

From Andrew Howroyd, May 10 2017: (Start)
Number of n X k binary matrices with every 1 adjacent to some 0 horizontally, vertically, diagonally or antidiagonally.
Number of dominating sets in the n X k king graph. (End)

Examples

			Table starts
....1........3...........5...............9.................17
....3.......15..........57.............225................891
....5.......57.........417............3249..............25533
....9......225........3249...........50625.............793881
...17......891.......25533..........793881...........24879489
...31.....3519......199489........12383361..........775176415
...57....13905.....1560161.......193349025........24176619049
..105....54945....12202673......3018953025.......754066017977
..193...217107....95434773.....47135449449.....23517838102321
..355...857871...746388537....735942652641....733484062428443
..653..3389769..5837454753..11490533873361..22876204302519509
.1201.13394241.45654295713.179405691966081.713472099034206097
...
Some solutions for n=3 k=4
..1..1..1..0....1..0..1..1....0..1..0..1....0..1..1..0....1..0..0..0
..0..1..0..0....0..0..0..0....1..0..0..1....0..0..1..1....0..0..1..1
..0..1..0..1....1..1..0..1....0..1..1..1....1..1..0..1....1..1..0..0
		

Crossrefs

Columns 1-7 are A000213(n+1), A218657, A218658, A218659, A218660, A218661, A218662.
Diagonal is A133791.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +3*a(n-3)
k=3: a(n) = 6*a(n-1) +11*a(n-2) +26*a(n-3) -5*a(n-4) -5*a(n-6)
k=4: a(n) = 12*a(n-1) +45*a(n-2) +180*a(n-3) -27*a(n-4) -81*a(n-6)
Columns k=1..z+1 for an underlying 0..z array: a(n) = sum(i=1..2z+1){(2^k-1)*a(n-i)} checked for z=1..3.
Showing 1-1 of 1 results.