A218667 O.g.f.: Sum_{n>=0} 1/(1-n*x)^n * x^n/n! * exp(-x/(1-n*x)).
1, 0, 1, 1, 4, 13, 46, 181, 778, 3585, 17566, 91171, 499324, 2873839, 17317743, 108933098, 713481122, 4855161425, 34257461754, 250177938679, 1887886966690, 14699340919293, 117933068390123, 973776266303732, 8265721830953558, 72052688932613079, 644393453082317301
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 13*x^5 + 46*x^6 + 181*x^7 +... where A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-2*x)^2/2!*exp(-x/(1-2*x)) + x^3/(1-3*x)^3/3!*exp(-x/(1-3*x)) + x^4/(1-4*x)^4/4!*exp(-x/(1-4*x)) + x^5/(1-5*x)^5/5!*exp(-x/(1-5*x)) + x^6/(1-6*x)^6/6!*exp(-x/(1-6*x)) +... simplifies to a power series in x with integer coefficients.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k*X)^k*x^k/k!*exp(-X/(1-k*X)));polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
-
PARI
/* From a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(-1, k-1) */ {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!} {a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n-k, k) * binomial(n-1, k-1)))} for(n=0, 30, print1(a(n), ", "))
Formula
a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(n-1, k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jul 30 2014
Antidiagonal sums of Triangle A245111.
Comments