cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218667 O.g.f.: Sum_{n>=0} 1/(1-n*x)^n * x^n/n! * exp(-x/(1-n*x)).

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 46, 181, 778, 3585, 17566, 91171, 499324, 2873839, 17317743, 108933098, 713481122, 4855161425, 34257461754, 250177938679, 1887886966690, 14699340919293, 117933068390123, 973776266303732, 8265721830953558, 72052688932613079, 644393453082317301
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1+x^2) = Sum_{n>=0} (1-n*x)^n * x^n/n! * exp(-x*(1-n*x)).

Examples

			O.g.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 13*x^5 + 46*x^6 + 181*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-2*x)^2/2!*exp(-x/(1-2*x)) + x^3/(1-3*x)^3/3!*exp(-x/(1-3*x)) + x^4/(1-4*x)^4/4!*exp(-x/(1-4*x)) + x^5/(1-5*x)^5/5!*exp(-x/(1-5*x)) + x^6/(1-6*x)^6/6!*exp(-x/(1-6*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k*X)^k*x^k/k!*exp(-X/(1-k*X)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n-k, k) * binomial(n-1, k-1)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(n-1, k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jul 30 2014
Antidiagonal sums of Triangle A245111.